Denoising of EEG Signals using Wavelets and SIMULINK Techniques
B. Krishna Kumar

Dr. B.Krishna Kumar , Professor, Methodist college of Engineering and Technology Hyderabad, India.
Manuscript received on January 02, 2020. | Revised Manuscript received on January 15, 2020. | Manuscript published on January 30, 2020. | PP: 335-339 | Volume-8 Issue-5, January 2020. | Retrieval Number: C5113098319/2020©BEIESP | DOI: 10.35940/ijrte.C5113.018520

Open Access | Ethics and Policies | Cite | Mendeley
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (

Abstract: The Electroencephalogram (EEG) is the standard technique for investigating the brain’s electrical activity in different psychological and pathological states. Analysis of Electroencephalogram (EEG) signal is a challenging task due to the presence of different artifacts such as Ocular Artifacts (OA) and Electromyogram. Normally EEG signals falls in the frequency range of DC to 60 Hz and amplitude of 1-5 μv. Ocular artifacts do have the similar statistical properties of EEG signals, often interfere with EEG signal, thereby making the analysis of EEG signals more complex. In this research paper, removal of artifacts was done using both matlab coding as well as SIMULINK DWT and IDWT blocks by setting the various parameters of the blocks. The implementation of denoising of EEG signal using SIMULINK DWT and IDWT blocks is explained in detail in the paper under the methodology heading. In this paper the collected EEG signal is normalized and later linearly mixed with the normalized EOG signal resulting in a noisy EEG signal. This noisy EEG signal is decomposed to 4 levels by using different wavelets. This decomposition of EEG signals yields approximate and detail coefficients. Later different thresholding techniques were applied to detail coefficients and estimated the Signal to Noise Ratio of it.
Keywords: WT, DWT, Ocular Artifacts.
Scope of the Article: Software Engineering Techniques and Production Perspectives.