

Single Phase to Three Phase Rotary Type Converter with Motor Control for AC Machinery Laboratory Equipment

Alma L. Tangcuangco, Melchor S. Henson, Rhoderick M. Favorito

Abstract: This research project was developed to introduce the phase conversion technology in augmenting the laboratory equipment in Don Honorio Ventura State University Electrical Engineering Department. The study was designed and developed by applying the standards in Philippine Electrical Code, National Electrical Code, Philippine Distribution Code and NEMA Standards. A Phase Failure Relay was specifically installed to ensure the single phase output is producing a three phase supply and a forward-reverse motor control circuit so that the evaluation of the phase converter will be more significant through several parameters. Voltage, current, and power were measured and recorded using six scenarios and four cases. Six scenario were performed to identify the suitable size of running capacitor. Four cases were also performed to evaluate the performance of the phase converter at different types of load condition. The measured voltage unbalance output of the phase converter at no load in this study is 1.83% that is accepted by the Philippine Distribution Code which has a standard limit of 2.5%; otherwise, the three phase is not consistent. The inductive loads perform better than capacitive loads when operating on a phase converter as the synchronous motor produces unbalance voltage in the system. It was also identified that phase converter consumes more power with 41.84% percent difference compared to normal three phase distribution when operating a ½ horse power (hp) induction motor load. This study served as an educational guide on how three phase load behaves in an innovated three phase supply not advisable for industrial or commercial use.

Keywords : phase monitoring, single phase, three phase, laboratory equipment

I. INTRODUCTION

Three phase system is a type of poly phase system which is the most common method used by grids worldwide to transfer electrical power [1]. This system is generally more economical than single phase or two phase system because it

uses fewer conductor materials to allocate electric power at similar voltage [2], [3]. In the case of motors, three phase motors have characteristics that make it unique: smaller size, lighter weight, cheaper cost [4], and has a better power factor [5] and it is well-known for its usefulness and economic benefit [6]. Three phase machines are commonly operated through a three phase power. However, one can actually use it in single phase supply with the aid of phase converters [7] – [12]. The technology of three phase distribution and machinery is essential when it comes to the field of Electrical Engineering (EE) [12]. AC Machinery is part of electrical engineering [5] that introduces three phase motors for generating both mechanical and electrical output [13]. It also expands the idea of EE students that motors are important when it comes to electrical engineering industry. However, the laboratory of the EE department in the university has only single phase supply. Proponents developed a single phase to three phase converter with voltage unbalance and single phasing detector for the laboratory purposes of AC Machinery and other concerning subject. Also, the proponents analyzed the performance of a three phase load in terms of voltage, speed, current, revolution per minute (RPM) and power when operating from a rotary phase converter [7].

Different types of converter were introduced in support with the improving technology like [14] – [18] that used rotary phase converter to drive a poly phase electric load. A phase converter was developed using transformers [19] – [21]. Phase converters are also constructed and designed through the use of induction motors like [22] – [25], and connected into a single phase supply to produce three phase supply [26] – [32]. While [33, 34] designed an apparatus and system that will produce a two phase power from a three phase supply using a delta configuration rotor and induction processed through phase converter. Several studies are also made on phase conversion system concerning electronics like [35] – [42]. However, in the present study a rotary phase converter was developed for instructional materials purposes. A rotary phase converter was constructed to produce a three phase supply from a single phase supply with an idler motor. Typically, idler motor is an induction motor due to its transformer connection (wye and delta) and will produce a third phase in the third winding [43] – [45]. The control circuit of the phase converter is a combination of contactor for motor starting application, overload relay, timer relay to control the startup of the idler motor, push buttons, and indicator lamp.

Revised Manuscript Received on August 12, 2020.

* Correspondence Author

Alma L. Tangcuangco*, Department of Electrical Engineering, Don Honorio Ventura State University, Bacolor, Pampanga, Philippines. E-mail: amatangcuangco@gmail.com

Melchor S. Henson, Department of Electrical Engineering, Don Honorio Ventura State University, Bacolor, Pampanga, Philippines. E-mail: msh2018abc@gmail.com

Rhoderick M. Favorito, Department of Electrical Engineering, Don Honorio Ventura State University, Bacolor, Pampanga, Philippines. E-mail: dericmfavorito@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an [open access](#) article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

The forward-reverse circuit is also a combination of contactor, overload relay, auxiliary contacts (electrical interlocking), push buttons, indicator lamp and phase monitoring relay to monitor the unbalance voltage and single phasing.

II. METHODOLOGY

The following algorithms were employed in developing a single phase to three phase converter:

A. Identification of Idler Motor

Rotary phase converters are commonly built with higher horse power (hp) rating as compared with that of the recipient's load. The horse power rating of the largest motor load to be connected determines the minimum converter rating needed [46]. There are $\frac{1}{4}$ hp and $\frac{1}{2}$ hp three phase induction motors and $\frac{1}{4}$ hp three phase synchronous motor available in the EE laboratory of the university. These will serve as guides on what ratings to be used in constructing the converter. The horse power rating of the converter is generally two to four times the horse power rating of the load [47]. So, one hp phase converter was considered as the idler motor, which will serve as the third line of the three phase supply. Wires, capacitors and circuit protection ratings were considered to produce a better system. In the construction, wiring diagrams served as guide in the proper design of the project. For testing, the phase converter was evaluated with certain cases like no-load and on-load condition and also voltage and current were checked as well. Implementation of the project was done after all the testing.

B. Identification of System Components

Essential standards were utilized in determining the size of conductor wire, circuit breaker, grounding wire, capacitor and as well as in determining what type of circuit protection and enclosure box to be used.

Conductor Wire and Circuit Breaker

Every wire has a maximum electrical current it can transmit safely and has a correct breaker size to go along with it [48]. For the power circuit of the study, two sets of wires must be sized in a single motor phase converter installation: the three phase wires to the motor and the single phase wires to the supply. According to [49] section 4.30.14.2 and section 4.30.14.4, a half horsepower, 230 volts, single phase ac motors and three phase ac motors have a full-load current of 4.9 amps and 2.2 amps respectively. For the safety factor of the motors, the minimum ampere rating of circuit wire is 125% times the motor full load current [50], - [52]. Mathematically, the single phase wires to the supply will have a current of 6.125 amps and the three phase wires to the motor have a current of 2.75 amps. Therefore, for circuit breaker, 15 Ampere Trip (AT) for single phase ac motors [50] and 4 AT three phase ac motors were used [53] and the size of wires was 3.5 mm^2 equivalent to #12 American Wire Gauge (AWG) [50]. For the control circuit, the total current rating in the motor of the phase converter is 4.0 amps, then the size of wires was #18 AWG [54] and 3 AT for circuit breaker [53] considering forward and reverse control circuit cannot be run at the same time.

Grounding Conductor

For the safety of the operator it is important that a grounding conductor should be installed in all electrical equipment. For phase converter applications, the grounding conductors should be connected to the motor base, the phase converter enclosure and the grounding provision on the meter pole. The wire used in grounding application is based on [50], which is 3.5 square mm or #12 THW AWG. This will ensure a continuous ground return to carry any fault current back to the transformer and limit the voltage minimize electrical shock hazard.

Capacitor Size

An oil- filled type for running capacitor and starting capacitor was used [14], [55]. According to [56], [57], starting capacitor should be rated 450VAC, 300-400 microfarad, oil-filled type. This capacitor will function in the circuit when the idler motor starts to reach its required speed [47] and will be automatically disconnected when the idler motor achieves its full speed [58]. It is connected between the first terminal and the third terminal of the idler motor and wired through a magnetic switch to energize it.

Running capacitors, an oil filled capacitor, were used to correct the voltage unbalance in the phase converter and were determined using capacitor table [56] and tested at no load condition. For safety reason, running capacitors should not be expose to voltage above 10 percent of the nominal rating [59]. Then the voltage rating will be computed as 1.56 times the applied line voltage. Oil filled capacitors are used where high-peak voltages, high-current, and long operating life are needed [60]. This includes high-voltage filtering and energy storage, motor run, motor start, commutating, high-voltage lighting, heating, ventilation, air conditioning, and arc suppression applications. This type of capacitor is used to improve performance and efficiency to some degree. These are permanently connected into the first terminal to third terminal and second terminal to third terminal connections.

Circuit Protection The types of relays used in the study were power relays (magnetic contactor), overload relay and time relay. According to [61], [62] standard contactor for 1hp motor is NEMA 1 magnetic contactor with maximum horsepower capacity of 7.5hp at 3 phase, 230 V load voltage, 27 A continuous current rating. It will regulate changes in electrical frequency which comes from a power supply as well as the safety and convenience to connect and interrupt branch current is concern [63], [64]. The thermal overload relay will cut the power if the motor draws too much current for an extended period of time [65]. The time relay will control the circuit based on time particularly for motor starting [66], [67]. A 220 VAC, 5 amps contact rating is set for 0.3s. In motor starting application with starting capacitor, the contact should not exceed 0.5s otherwise it will damage the machine. The overload relay was computed using the formula for safety factors of motors: $1.25 \times \text{full load current of idler and motor load}$ [68], [69]. In the study, overload relay was set to 4A as the full load ampere of the motor. A phase monitoring relay that is Phase Failure Relay (PFR) was installed with a buzzer to alarm if single phasing and voltage unbalance occur in the system.

Based on [70] section 3.2.5.2, the maximum voltage unbalance at the connection point of any user shall not exceed 2.5% during normal operating conditions. And the NEMA definition of percentage voltage unbalance (V.U.) is $\% \text{V.U.} = (\text{Maximum Deviation of from average Voltage}) / (\text{Average of voltage}) \cdot 100$ [71], [72].

Enclosure Box

A 20"x 16"x 8" NEMA 4X equivalent to IP66 type enclosure box as a standard of safety [73] was used. This type of enclosures is for either indoor or outdoor use to provide a level of protection to personnel against unintentional contact with the equipment and to provide a degree of protection against falling dirt, rain, windblown dust, splashing water, and corrosion [74].

C. Assembly of Power and Control Circuit

Power and control circuit of the idler motor is the main supplier of the three phase converter. Idler motor served as the third terminal lead of the three phase line as shown in Fig 1. The control circuit was designed through the combination of contactors, timer, indicator lights, push button rated, overload relay, and selector switch. While, the power circuit of the idler motor design is composed of contactors, starting and running capacitors.

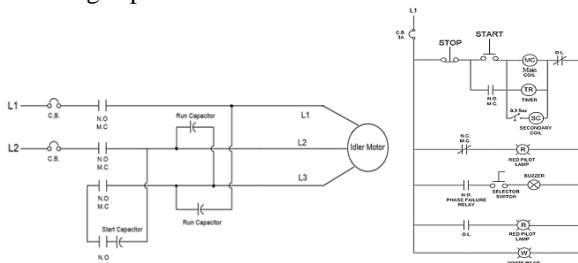


Fig 1. Power and Control Circuit of Idler Motor

Control and power circuit of the forward-reverse as shown in Fig 2. The forward and reverse motor control circuit serves as the load. The control circuit consists of contactors, auxiliary contacts, indicator lights, push buttons, overload and phase monitoring relay. Combination of Normally Open (NO) and Normally Closed (NC) auxiliary contacts were used for interlocking the motor control. While, power circuit consist of contactors and overload relay.

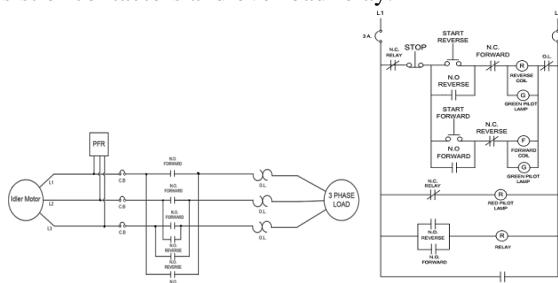


Fig 2. Power and Control Circuit of the Forward-Reverse

As seen in Fig 3 and 4, the control circuit was simulated in Logo Soft Comfort to check the precision of the design of the phase converter before the actual assembly.

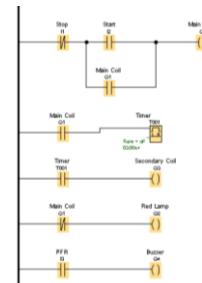


Fig 3. Control Circuit of the Idler Motor Simulation

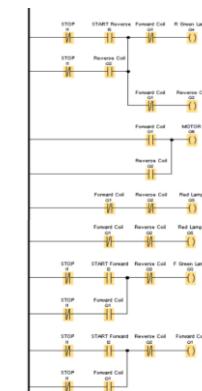


Fig 4. Control Circuit of the Forward- Reverse Simulation

D. Testing & Evaluation

The system was tested in different conditions in which the load can fulfill the rating of the phase converter. It was tested at no load condition with different capacitors rated at 440 V to identify the suitable rating for running capacitor. Voltage, and current were measured and evaluated in each scenario:

- Scenario 1: 15uF rated connected to L1-L3 (L₁₃)
- Scenario 2: 15uF rated connected to L2-L3 (L₂₃)
- Scenario 3: 15uF and 12uF connected to L1-L3 (L₁₃)
- Scenario 4: 15uF and 12uF connected to L2-L3 (L₂₃)
- Scenario 5: 15uF and 10uF connected to L1-L3 (L₁₃)
- Scenario 6: 15uF and 10uF connected to L2-L3 (L₂₃)

Selection of running capacitor was based on computed %V.U., a less than 2.50% is acceptable [70]. Scenario that produce the lowest %U.V. was tested at different load conditions:

- Case 1: At No Load Condition
- Case 2: At 1/4hp Synchronous Load
- Case 3: At 1/4hp Three Phase Induction Load
- Case 4: At 1/2hp Three Phase Induction Load

The phase converter was implemented in the laboratory of Electrical Engineering Department to demonstrate phase conversion in AC Machinery and other concerning subjects. Its performance was evaluated by comparing it on the normal three phase distribution

III. RESULTS AND DISCUSSIONS

This section provides data through the results of several testing and evaluation on the system that were done simultaneously to assess the performance of the phase converter using different load conditions.

Table I. Status of Phase Converter at Different Capacitors

Scenario	Current(A)			Speed (rms)	S.D.	Remarks
	L ₁	L ₂	L ₃			
1	1.9	1.5	1.3	1798	0.3055	Tripped
2	1.9	1.3	2.3	1798	0.5033	Tripped
3	1.9	1.6	2.1	1798	0.2517	Tripped
4	1.9	1.6	2.1	1798	0.2517	Tripped
5	1.7	1.7	1.8	1798	0.0577	Normal
6	2.1	1.3	1.8	1798	0.4041	Tripped

Line to line voltages and currents were measured on a 230V single phase input supply. It is observed that every scenario, there was a constant speed in the motor at 1798 revolution per minute. After 3 s of operation, the PFR tripped on Scenario 1, 2, 3, 4, and 6. While, Scenario 5 has normal operation. It is shown in Table I; the normal operation standard deviation of the phase relay involves line current outputs of 5.77%.

Table II. Voltage Unbalance of the Phase Converter

Scenario	Voltage(V)			%V.U.
	L ₁₂	L ₂₃	L ₃₁	
1	230	216	202	6.48
2	230	212	233	5.78
3	231	233	242	2.83
4	233	243	231	3.11
5	234	235	241	1.83
6	232	222	241	4.17

From the results as shown in Table II, capacitor value greatly affected the output line voltages of the phase converter and as the running capacitor tries to correct the voltage unbalance. Scenario 5 balances the output voltage of the phase converter and operates at normal condition with 1.83% voltage unbalance which is accepted in compliance with the [70] recommendation.

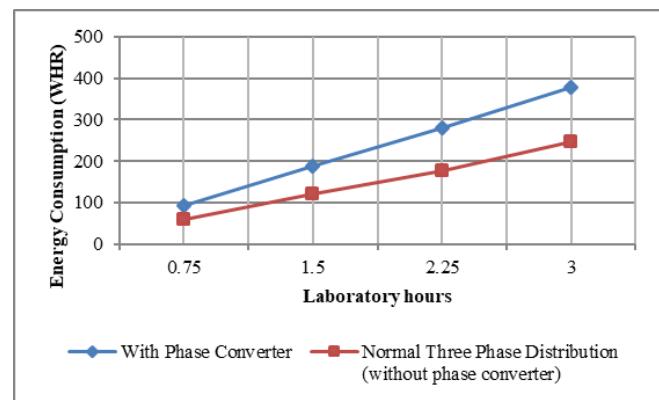
Based on Table III, the synchronous motor shows an abnormal status in the system (Case 2) due to the overcurrent detected by the overload relay that was set 4A and the PFR tripped indicated that the voltage unbalance in the system exceeded 2.5%. For induction motors, the system shows normal status in terms of current and line to line voltages. This verified that most of the phase converter only will be used with inductive loads [75]. The capacitors produce leading power factor in the converter [76], to neutralize the system an inductive load that produces lagging power factor [77] is an option.

Table III. Load Condition with Phase Converter

Case	Rotation	Voltage (V)			Current (A)			% V.U.
		L ₁₂	L ₂₃	L ₃₁	L ₁	L ₂	L ₃	
1	Forward	234	235	241	1.7	1.7	1.8	1.83
	Reverse	241	235	234	1.7	1.7	1.8	
2	Forward	232	206	221	5.4	5.3	1.6	7.37
	Reverse	222	237	205	5.4	5.3	1.6	
3	Forward	225	232	223	0.8	0.8	0.8	2.39
	Reverse	223	232	225	0.8	0.8	0.8	
4	Forward	233	232	231	0.3	0.3	0.3	0.43
	Reverse	231	232	233	0.3	0.3	0.3	

Based on the results on Table III and IV, a phase converter and normal operation (three phase distribution system) was compared in performance based on voltage and current outputs and real power. Percentage voltage unbalance of

2.3% of the three phase distribution are stable while acceptable unstable voltage unbalance was obtained in the phase converter.


Table IV. Load Condition at Normal Operation

At Forward Rotation		Voltage (V)			Current (A)		
Motor Load	Rating	L ₁₂	L ₂₃	L ₃₁	L ₁	L ₂	L ₃
Synchronous	1/4 hp	220	218	215	2.4	2.3	2.5
Induction	1/2 hp	219	217	214	0.3	0.3	0.3
Induction	1/4 hp	223	219	223	0.8	0.8	0.8

Table V. Input and Output Real Power in Watts

1 φ Supply (input)	Voltage(V)			Current(A)			Power
	232			1.06			
3 φ Converter (Output)	L ₁₂	L ₂₃	L ₃₁	L ₁	L ₂	L ₃	687
	234	235	241	1.9	2.6	2.1	

Table V shows that an idler motor of 1hp phase converter at no load can only deliver 687 W much higher compared with the single phase operation. It is proven in Fig 5 that power consumed by the phase converter with 1/2 hp three phase inductor motor is higher than normal distribution for loaded system which also showed that there was an increase of 13.08 Whr at percentage difference of 41.84% power consumption based on laboratory class hours. This high energy consumption is due to parasitic power consumption according to [78].

Fig 5. Consumed Power of the 1/2hp Three Phase Motor

IV. CONCLUSION AND RECOMMENDATION

The phase converter with phase failure was developed. This equipment can be a substitute to a three phase supply if the latter is not present or provided by the community electric cooperatives. It is for educational purposes only and not for commercial used since the power consumption is higher at a percent difference of 41.84% due to the phase converter itself. The experimental results also show that the phase failure relay cuts the power supply at 3 s after detecting voltage unbalance to protect both the phase converter and the load from overcurrent specifically when a synchronous motor was connected in the system.

REFERENCES

1. Rajput, R. K., Basic Electrical Engineering, Laxmi Publication (P) Ltd, New Delhi, 2009, pp 153.
2. Godse, A.P., Baks;hi, U.A., Basic Electrical and Electronics Engineering, 1st ed., Technical Publications Pune, India, 2007, pp 2.
3. Bakshi, U.A., Bakshi, V.U., Electrical Technology, 4th ed., Technical Publication Pune, 2009, pp 132.
4. Rajput, R. K., "Electrical Machines," in *SI Units*, 4th ed., Laxmi Publication (P) Ltd, New Delhi, 2006, pp 255.
5. Bakshi, U.A., Godse, A.P., Bakshi, M.V., Electrical Machines & Electronics, 1st ed., Technical Publications Pune, India, pp. 3-1.
6. Fleckenstein, J., Three Phase Electrical Power, CRC Press, Taylor and Francis Group, 2017, pp 283 - 286
7. Surbrook, T., Althouse, J., "Interpreting the National Electrical Code," *Based on the 2011 National Electric Code*, 9th ed., Delmar Cengage Learning, 2011, pp. 236
8. Dos Santos, E.C., Da Silva, E.R., "Advanced Power Electronics Converters," *PWM Converters Processing AC Voltages*, IEEE Inc., John Wiley & Sons, 2015, pp 82
9. S. I. Kahn, P. D. Ziogas and M. H. Rashid, "A novel single- to three-phase static converter," in *IEEE Transactions on Industry Applications*, vol. 25, no. 1, pp. 143-152, Jan.-Feb. 1989, doi: 10.1109/28.18884.
10. J. Nesbitt, C. Chen, D. M. Divan and D. W. Novotny, "A novel single phase to three phase converter," *[Proceedings] APEC '91: Sixth Annual Applied Power Electronics Conference and Exhibition*, Dallas, TX, USA, 1991, pp. 95-99, doi: 10.1109/APEC.1991.146141.
11. J. Wen and K. Ma Smedley, "Synthesis of Multilevel Converters Based on Single- and/or Three-Phase Converter Building Blocks," in *IEEE Transactions on Power Electronics*, vol. 23, no. 3, pp. 1247-1256, May 2008, doi: 10.1109/TPEL.2008.921175.
12. Steward, W.E., Stubbs, T.A., "Modern Wiring Practice", *Design and Installation*, 14th ed., Elsevier Ltd., 2010, pp 255.
13. Jones, L., Electrical Engineering License Review, 8th ed., Engineering Press, Austin, Texas, pp 3-1.
14. Smith, D.B., "Single to Three Phase Simplified," *Three Phase by Dave*, 2017, pp 2.
15. Pizzi, N., "Basic Science Concepts and Applications," *Principles and Practices of Water Supply Operations Series*, 4th ed., American Water Works Association, 2011, pp510.
16. Ronk, L. B., & Hertz, C. M., "Rotary phase converter," *U.S. Patent No. 4,249,237*, Washington, DC: U.S. Patent and Trademark Office, 1981.
17. C. Heising, J. Fang, R. Bartelt, V. Staudt and A. Steimel, "Modelling of Rotary Converter in Electrical Railway Traction Power-Systems for Stability Analysis," *Electrical Systems for Aircraft, Railway and Ship Propulsion*, Bologna, 2010, pp. 1-6, doi: 10.1109/ESARS.2010.5665235.
18. A. Pfeiffer, W. Scheidl, M. Eitzmann and E. Larsen, "Modern Rotary Converters for Railway Applications," *Proceedings of the 1997 IEEE/ASME Joint Railroad Conference*, Boston, MA, USA, 1997, pp. 29-33, doi: 10.1109/RRCON.1997.581349.
19. Hogan, J. C., "Analysis of single-phase-to-3-phase static phase converters," *American Institute of Electrical Engineers, Part II: Applications and Industry*, Volume 74 Issue no. 6, 1994, pp. 403-406.
20. S. Ofuji, T. Oshikata and Y. Matsuda, "New Switching Sequence for Three Phase Converter with ZVS Using a Transformer," *Proceedings of Power Conversion Conference - PCC '97*, Nagaoka, Japan, 1997, pp. 797-800 vol.2, doi: 10.1109/PCCON.1997.638326.
21. A. Iqbal, S. Moinuddin, M. R. Khan, S. M. Ahmed and H. Abu-Rub, "A Novel Three-Phase to Five-Phase Transformation Using a Special Transformer Connection," in *IEEE Transactions on Power Delivery*, vol. 25, no. 3, pp. 1637-1644, July 2010, doi: 10.1109/TPWRD.2010.2042307.
22. Smith, O. J., "Three phase motor operated from a single phase power supply and phase converter," *U.S. Patent No. 5,545,965*, Washington, DC: U.S. Patent and Trademark Office, 1996.
23. A. K. Adapa and V. John, "Active-Phase Converter for Operation of Three-Phase Induction Motors on Single-Phase Grid," in *IEEE Transactions on Industry Applications*, vol. 53, no. 6, pp. 5668-5675, Nov.-Dec. 2017, doi: 10.1109/TIA.2017.2737398.
24. F. Khosravi, N. A. Azli and A. Kaykhosravi, "A New Single-Phase to Three-Phase Converter Using Quasi Z-Source Network," *2011 IEEE Applied Power Electronics Colloquium (IAPEC)*, Johor Bahru, 2011, pp. 46-50, doi: 10.1109/IAPEC.2011.5779869.
25. R. Q. Machado, S. Buso and J. A. Pomilio, "A Line-Interactive Single-Phase to Three-Phase Converter System," in *IEEE Transactions on Power Electronics*, vol. 21, no. 6, pp. 1628-1636, Nov. 2006, doi: 10.1109/TPEL.2006.882963.
26. Newman Jr, R. C., "Automatic phase converter," *U.S. Patent No. 7,511,979*, Washington, DC: U.S. Patent and Trademark Office, 2009.
27. H. Douglas and M. Malengret, "Symmetrical PWM with a split-capacitor single-phase to three-phase converter for rural electrification," *IEEE International Symposium on Industrial Electronics. Proceedings. ISIE'98 (Cat. No.98TH8357)*, Pretoria, South Africa, 1998, pp. 289-293 vol.1, doi: 10.1109/ISIE.1998.707794.
28. P. N. Enjeti, W. Sulistyono and S. Choi, "A new direct phase converter to power three phase induction motor from a single phase supply," *Proceedings of 1994 Power Electronics Specialist Conference - PESC'94*, Taipei, Taiwan, 1994, pp. 1173-1179 vol.2, doi: 10.1109/PESC.1994.373831.
29. R. Madorell and J. Pou, "Modulation techniques for a low-cost single-phase to three-phase converter," *2004 IEEE International Symposium on Industrial Electronics*, Ajaccio, France, 2004, pp. 1279-1284 vol. 2, doi: 10.1109/ISIE.2004.1571997.
30. R. Z. Scapini, C. Rech, T. B. Marchesan, L. Schuch, R. F. de Camargo and L. Michels, "Capability analysis of a D-STATCOM integrated to a single-phase to three-phase converter for rural grids," *2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE)*, Istanbul, 2014, pp. 2560-2565, doi: 10.1109/ISIE.2014.6865023.
31. Steinberg; Shmuel, "Methods and apparatus for supplying three phase power," *U.S. Patent No. 9,893,640*, 2018.
32. Y. Ohnuma and J. Itoh, "Space vector modulation for a single phase to three phase converter using an active buffer," *The 2010 International Power Electronics Conference - ECCE ASIA -*, Sapporo, 2010, pp. 574-580, doi: 10.1109/IPEC.2010.5543304.
33. Kernahan, K., "Apparatus for Converting Three Phase Electrical Power to Two Phase Electrical Power," *U.S. Patent Application US13/315,019*, 2001.
34. X. He et al., "Advanced Cophase Traction Power Supply System Based on Three-Phase to Single-Phase Converter," in *IEEE Transactions on Power Electronics*, vol. 29, no. 10, pp. 5323-5333, Oct. 2014, doi: 10.1109/TPEL.2013.2292612.
35. Pernyeszi, J., "Motor drive circuit," *U.S. Patent No. 6,275,405*, Washington, DC: U.S. Patent and Trademark Office, 2001.
36. Olsen, I., & Pasquale, N., "Phase conversion device with built-in demand reduction / power boosting," *U.S. Patent Application 10/710,234*, 2004.
37. Patil, S. B., & Aspalli, M. S., "Operating Three Phase Induction Motor Connected to Single Phase Supply," in *International Journal of Emerging Technology and Advanced Engineering*, 2004, pp. 2250-2459.
38. Rehman, M. S. F., "High Speed Voltage Switching Converter from Single Phase to Three Phase: Design and Implementation Process," in *Global Journal of Researches in Engineering*, Volume 13, Issue 12, 2013.
39. Mayhew, S., "System and Method for Operating a Soft Starter in Conjunction with a Single to Three Phase Static Converter," *U.S. Patent No. 7,859,217*, Washington, DC: U.S. Patent and Trademark Office, 2010.
40. Chopade D.P., Halmukhe R.M., Chaudhari P.S, Parandkar M.R., "Single Phase to Three Phase Converter Using Scott Connection", Bharati Vidyapeeth University, 2010.
41. Meiners, L. G., "H-bridge Electronic Phase Converter," *U.S. Patent No. 20030099124*, South Dakota: U.S Patent and Trademark Office, 2004.
42. J. A. A. Dias, E. C. dos Santos, C. B. Jacobina and E. R. C. da Silva, "Application of Single-Phase to Three-Phase Converter Motor Drive Systems with IGBT Dual Module Losses Reduction," *2009 Brazilian Power Electronics Conference, Bonito-Mato Grosso do Sul*, 2009, pp. 1155-1162, doi: 10.1109/COBEP.2009.5347623.
43. Official Gazette of the United States Patent and Trademark Office, *Patents*, U.S. Department of Commerce, Volume 1150, Issue 4, pp. 2606.
44. U.A.Bakshi, M.V. Bakshi, Asynchronous Machines, 1st ed., Technical Publication Pune, India, 2008, pp. 19.
45. Cochran, P., "Polyphase Induction Motors," *Analysis, Design, and Application*, CRC Press, 2018, pp. 620.
46. Putnam. P.A., "Beef Cattle Breeds," *U.S. Department of Agriculture Farmer's Bulletin 2228*, U.S. Department of Agriculture, 1975, pp. 8.

47. Soderholm, L.H., Phase Converters for Operation of Three-phase Motors from Single-phase Power, U.S. Department of Agriculture, Farmer's Bulletin No. 2252, pp. 8.

48. Dunlop, C., "Electrical System," *Principle of Home Inspection*, Dearborn Real Estate Education, Chicago, USA, 2003, pp. 88.

49. Philippine Electrical Code 1st ed., *IIEE Philippines*, 98 Kalayaan Avenue, Central Diliman, Quezon City, 2009, pp. 64-72.

50. Beltran, A.J., Philippine Electrical Code Reviewer, 2014, pp. 64, pp. 44., pp. 33

51. Miller, C., Electrician's Exam Prep, Jones and Bartlett Publishers, 2008, pp.133.

52. EC&M, "Basic," *Sizing a Circuit Breaker*, available on <https://www.ecmweb.com/basics/article/20898940/sizing-a-circuit-breaker>

53. Commission électrotechnique international, "Electrical Installation Guide," *According to IEC International Standards*, Technical Series, Schneider Electric, 2008, pp. H18. Available from https://books.google.com.ph/books?id=yFMw49w9LSgC&pg=PT258&dq=IEC+60947-2&hl=en&sa=X&ved=2ahUKEwi_3-f1terqAhXEGaYKHQA8AOMQ6AEwAnoECAMQAg#v=onepage&q=IEC%2060947-2&f=false

54. National Electrical Code, *International Electrical Code Series*, 2008 ed., National Fire Protection Association. pp. 50, pp. 80, pp. 255, pp. 95, pp. 177.

55. Shultz, G., *Transformers and Motors, A Single Source Reference for Electricians*, Newnes, Elsivier, 2012, pp. 159.

56. Cabangon, J., "Refrigeration and Air Conditioning," *Repair and Troubleshooting Guide*, 7-1 Villamor Street, San Juan, Metro Manila: National Bookstore, 2012, pp.118.

57. Fischer, R., Chernoff K., Air Conditioning and Refrigeration Repair, McGraw Hill Professional, 1988, pp. 53.

58. Ghosh, S., *Electrical Machines*, Pearson Education, 2005, pp. 576.

59. Copeland Electrical Handbook, 2008 – 2009 edition, Emerson Climate Technologies, Inc., pp. A8.

60. Whitaker, J., *AC Power Systems Handbook*, 3rd Ed., CRC Press, 2007, pp. 87.

61. Allen- Bradley, "NEMA Contactor and Starter Specifications," *Technical Data*, Rockwell Automation Publication 500-TD014C-EN-P, 2017, pp. 2.

62. Eaton Canada, "NEMA Contactors and Starters Freedom Series," *Power Control Products*, Volume 5, 2017, pp. V5-T2-5.

63. Dave Grattan, Sam Nicholson, Integrating Switchgear Breakers and Contactors into a Safety Instrumented Function, *Journal of Loss Prevention in the Process Industries*, Volume 23, Issue 6, 2010, pp. 784-795

64. Herman, S., *Electric Motor Control*, 9th ed., Delmar- Cengage Learning, N.Y., USA, pp. 95.

65. Traister, J., Murray, R., "Commercial Electrical Wiring, Craftsman Book Company," *Updated to the '99 NEC*, 2000, pp. 293.

66. Gurevich, V., "Electric Relays," *Principles and Applications*, CRC Press, Taylor and Francis Group, 2018, pp. 277.

67. Li Yinhong, Shi Dongyuan and Duan Xianzhong, "A Study on Optimal Coordination of Definite-time Relay Based on Genetic Algorithm," 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No.03CH37495), Dallas, TX, USA, 2003, pp. 279-284 Vol.1, doi: 10.1109/TDC.2003.1335235.

68. Miller, C., "Motors, Motor Circuits and Controllers, Part IX: NEC Article 430," *Codes and Standards*, Electrical Contractor, 2018, available from <https://www.ecmag.com/section/codes-standards/motors-motor-circuits-and-controllers-part-ix-nec-article-430>

69. Lemau, "NEC calculation for overload sizing," *Electrical Engineering*, 2011, available from <https://www.electricneutron.com/motor-control/nec-calculation-for-overload-sizing/>

70. Philippine Distribution Code, "Performance Standards for Distribution and Supply," Manila: Philippines, 2016, pp. 31. Available from <http://www.erc.gov.ph/Files/Render/media/PhilippineDistributionCode2016Edition.pdf>

71. Power Quality in Electrical Systems, "Power Quality Basics," *Voltage Unbalance*, A compilation of various power quality information, issues, applications, technologies, news and updates, 2001. Available from <http://www.powerqualityworld.com/2011/06/voltage-unbalance-power-quality-basics.html>

72. Das, J.C., "Power System Analysis," *Short-Circuit Load Flow and Harmonics*, Marcel and Dekker Inc., N.Y., 2002, pp. 422.

73. NEMA Enclosures, available from <https://www.nemaenclosures.com/enclosure-ratings/ip-enclosures/ip6-enclosures.html>

74. Poly Case. Available from <https://www.polycase.com/ip66-enclosures>

75. Meiners, L.G., "Phase Converter," *U.S. Patent No. 6,297,971 B1*, USA, 2001.

76. Yuan Xiao, Bin Wu, S. C. Rizzo and R. Sotudeh, "A novel power factor control scheme for high-power GTO current-source converter," in *IEEE Transactions on Industry Applications*, vol. 34, no. 6, pp. 1278-1283, Nov.-Dec. 1998, doi: 10.1109/28.739008.

77. Grigsby, L., *Electric Power Generation, Transmission, and Distribution, The Electrical Power Engineering Handbook*, 3rd ed., CRC Press, Taylor and Francis Group, 2018, pp. 19-2.

78. J.K. 3 Phase Boosters Ltd, "How efficient is a phase converter?" *Boost Energy Phase Converters*, British Owned, available from <http://www.boost-energy.com/faqs/how-efficient-is-a-phase-converter>

AUTHORS PROFILE

Alma L. Tanguangco, Doctor of Technology (Dissertation Writing), Graduate of MEP-EE, BS Electrical Engineering, Registered Engineer, Professional Teacher, Science Technology and Engineering Center Manager.

Publications:

- Utilization of Participatory Ergonomics for Workstation Evaluation Towards Productive Manufacturing, *International Journal of Engineering and Advanced Technology (IJEAT)*, ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019.
- Development of 150 Watts, 12V Hydraulic Wheel DC Generator for a Farm at Brgy. Ligaya, Pulungmasle, Guagua, Pampanga, EAR, ISSN: 2286-4822, Volume V, Issue 8, November 2017.
- Performance Evaluation on Hydrokinetic Energy: A Global Review; EAR, ISSN: 2286-4822, Volume V, Issue 8, November 2017.
- Circuit 1 Lab Manual, ISBN 978-971-014-296-5, 2014.

Research Work:

- Speed Bump Flip Plate Mechanism of Electric Vehicle Charging Station
- A Portable Waste-Energy Recovery Equipment System Using Plasma Technology 3. Development of a Single Phase to Three Phase Rotary Type Converter with Motor Control for AC Machinery Laboratory Equipment

Membership: Institute of Integrated Electrical Engineers of the Philippines, Philippine Association of Researchers & Statistical Software Users, Pampanga Research Educators Organization.

Melchor S. Henson, Graduate of MAEd, BS Electrical Engineering, Registered Electrical Engineer. Research Interest: Renewable Energy, Machinery, Automation, Power System Distribution

Publications:

- Development of 150 Watts, 12V Hydraulic Wheel DC Generator for a Farm at Brgy. Ligaya, Pulungmasle, Guagua, Pampanga, EAR, ISSN: 2286-4822, Volume V, Issue 8, November 2017.
- Analysis of The Electrical Harmonic System of 230v, 60hz Supply of the College of Industrial Technology Building, Don Honorio Ventura Technological State University, FREQUENCY, ISSN 2244 – 5242, 2015

Membership: Institute of Integrated Electrical Engineers, Inc., ASE, IASPER, Asian Society of Teachers of Research (ASTR), Philippine Association of Institutions for Research, Inc. (PAIR)

Rhoderick M. Favorito, Doctor of Philosophy in Electronics (dissertation), Graduate of Master of Engineering Program in Electrical Engineering, Bachelor of Science in Electrical Engineering, Registered Engineer, Professional Teacher, Director of Extension Services.

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
www.ijrte.org
Exploring Innovation

Publications:

1. Trigonometry Worktext, ISBN 9717251517, 9789717251517
Grandbooks Publishing, 2015.
2. Circuit 1 Lab Manual, ISBN 978-971-014-296-5, 2014
3. Energy Harvesting Turnstile for 50 Watts Lighting and Auxiliary
Loads of DHVTSU Gate 2, FREQUENCY, ISSN 2244 – 5242,
2015

Membership: Institute of Integrated Electrical Engineers of the Philippines,
Philippine Association of Researchers & Statistical Software Users, Asian
Academic Association in Research and Management Incorporated,
Philippine Association of Extension Program Implementors Incorporation.