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Abstract: Malignant melanoma is the deadliest type of skin
cancer. If melanoma detection and diagnosis is performed in its
early stages, the probabilities of recovery and survival are higher.
Dermoscopy is a manual method which is applied by doctors to
diagnose this disease, but it strongly depends on the experience of
the specialist who performs this skin assessment. Although, many
proposals have been made for automated detection and diagnosis
of malignant melanoma based on images processing, there are
still improvement opportunities for melanoma diagnosis. This
paper aims to identify the current status of the latest researches
related to techniquesfor malignant melanoma diagnosis based on
images analysis, considering the three research questions that
have been elaborated for the systematic literature review: Q1)
Which arethe latest methods for malignant melanoma detection?
Q2) Which systemsfor malignant melanoma diagnosis have been
implemented in thelast 5 years? And Q3) Which CAD systemsfor
malignant melanoma detection have been developed?
Furthermore, a cross-analysis of the outcome was performed. The
results propose the implementation of systemsusing Inception V3
and the classifier Support Vector Machine, which achieved high
accuracies in malignant melanoma diagnosis based on images
processing.

Keywords: CAD Systems for Melanoma Diagnosis, CNN for
Melanoma Detection, Dermoscopic Images Processing,
Melanoma Detection, Support Vector Machine.

. INTRODUCTION

“Melanoma is a tumor that affects cells called melanocytes,
these cells produce melanin, which is the pigment that colors
our skin and protects it from the ultraviolet radiation. Most
melanoma cases are found on the skin and it is because of the
great sunlight exposure”, Marquez et al. [1]. “Malignant
melanoma is the deadliest type of skin cancer because of its
great ability to metastasize and its high chemo resistance”,
Herrera et a. [2]. According to the World Health
Organization (WHO) [3], “it is estimated that every year there
are 132000 malignant melanoma cases and approximately
66000 people die due to this disease and other types of skin
cancer”. Melanomais the deadliest type of skin cancer, even
though it only represents 4% of all skin cancer cases, it causes
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75% of skin cancer deaths, Jain et a. [71]. If melanoma is
detected and diagnosed in its early stages, the probabilities of
recovery and survival are higher [21]. Nowadays, there are
traditional methods and techniquesthat are used by doctorsin
order to detect and diagnose malignant melanoma, such as
dermoscopy, which is a manua assessment of the skin
performed by experts, but it only has an accuracy of 75-84%,
and strongly depends on the experience of the doctor who
performs the examination [21]. In this way, given the
importance of the early melanoma diagnosis, in the last years
many proposals have been made to detect and diagnose
malignant melanoma in its early stages based on images
analysis. For this reason, in the present paper, a systematic
review of the literature related to techniques for malignant
melanoma diagnosis based on images processing has been
made, according to a proposed taxonomy, in order to identify
future researches. This paper is organized as follows. Section
I describes the research methodology that has been used to
perform the systematic literature review related to techniques
for malignant melanoma diagnosis based on images
processing. Section |ll presents the proposed taxonomy,
considering the analysis of the studiesthat were selected from
the systematic literature review. Section 1V consists of the
analysis of the obtained results. Finally, Section V presents
the conclusions.

[I. RESEARCH METHODOLOGY

The research methodology that was used to perform the
systematic literature review related to techniques for
malignant melanoma diagnosis based on images processing,
has been made based on the work of Wong et a. [4],
considering the guidelines used by Kitchenham et a. [5],
which consists of three phases. (A) Planning the review: in
this phase, the research questions are elaborated and the
review protocol isdefined. (B) Developing thereview: in this
phase, the primary studies are selected according to the
selection and exclusion criteria. And (C) Results of the
review: in this phase, the statistics and the analysis of the
selected studies are presented.

A. Planning thereview

In the review planning, three research questions were
elaborated, and a research protocol was defined, which are
mentioned below:

Q1: Which are the latest methods for malignant melanoma
detection?

Q2: Which systems for malignant melanoma diagnosis
have been implemented in the
last 5 years?
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Q3: Which CAD systems for malignant melanoma
detection have been devel oped?
In order to perform the systematic review, the following
databases were mainly used:
ACM Digita Library and IEEE Xplore Digital Library, the
research covers the period from 2015 to 2020. The keywords
that have been applied to perform the research were: “CAD
Systems for Melanoma Diagnosis”, “CNN for Melanoma
Detection”, “Dermoscopic Images Processing”, “Melanoma
Detection”. After performing the research using the defined
keywords, the selection and exclusion criteria showed in
Table | were applied.

Table- |: Selection and exclusion criteria

Selection criteria Exclusion criteria

Studiesrelated to the state of art and
motivation.

Studies that do not belong to the
selected databases.

Studies that present Algorithms,
Architectures, CAD  Systems,
Frameworks, Methods, Models and
Systems to diagnose malignant
melanoma based on images
processing.

The study language is different
from English.

Studies that were not published
between 2015 and 2020.

Studies that present techniques for
melanoma detection, but which are
not oriented to  Software
Engineering.

B. Developing thereview

After the research was performed using the defined
keywordsin the sel ected databases (ACM Digital Library and
IEEE Xplore Digital Library), the studies that met the
selection and exclusion criteria (see Table I) were selected.
Fig. 1 shows the research process applied, 540 potentialy
eligible studies were found, from which, 19 studies met the
defined requirements and were sel ected.

fIEEEi w
Search was performed using ﬁ
keywords
l Obtaining 45 papers
540 Potentially eligible studies
\___//___\ The Introduction and Conclusions
were reviewed (Selection criteria
was applied)
Exclusion criteria was applied
l Obtaining 19 papers
Obtaining 125 papers
The Abstract of each article was
reviewed (Selection criteria was |[—
applied)

Fig. 1: Systematic literaturereview process

C. Resaultsof thereview
The studies that have been selected from the systematic

review process, contained information related to different
techniques which were used to process images in order to
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diagnose malignant melanoma. Table Il shows the
distribution of the selected studies according to the database
to which they belong, where it is observed that most of the
selected papers correspond to IEEE Xplore Digital Library
with atotal of 14 studies.

Table- |1: Potentially eligible studies and selected studies

Source Potentially Selected studies
eligible studies
ACM Digital Library 200 5
IEEE Xplore Digital 340 14
Library
Total 540 19

Fig. 2 showsthe number of selected studies per year between
2015 and 2020, and it is observed that most of the studies
which proposed different techniques for malignant melanoma
diagnosis based on images processing were published in
2018.
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Fig. 2: Papersper year

11, TAXONOMY

In order to perform the analysis of the selected studies that
have been found in the systematic literature review related to
techniques for malignant melanoma diagnosis based on
images processing, a taxonomy has been defined (see Fig. 3)
according to the research questions that were elaborated in the
planning of the review: “Methods” (Q1), “Systems” (Q2) and
“CAD Systems” (Q3). The classification “Methods”
corresponds to the studies that proposed different methods to
detect and diagnose malignant melanoma based on images
analysis. The classification “Systems” is related to the studies
which implemented different kinds of systems to
automatically diagnose malignant melanoma based on images
processing. In the classification “CAD Systems”, the studies
that developed specialized Computer Aided Diagnosis
Systems to diagnose malignant melanoma based on images
processing are found.

Methods
(Q1)

Systems
(Q2)

CAD Systems
(@3)

Fig. 3: Proposed taxonomy
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In summary, Table Il shows the selected studies that were
found in the systematic review according to the proposed
taxonomy (see Fig. 3).

Table- 111: Classification of studies

Classification References Total
Methods (Q1) [6,7,8,9,10,11, 12, 13, 14, 15, 24] 11
Systems (Q2) [16, 17, 18, 19, 20] 5
CAD Systems (Q3) [21, 22, 23] 3

The analysis of the selected studies according to the
proposed taxonomy is presented below.

A. Methods (Q1)

TableV presentsthe proposed methods that were found in
the selected studies related to malignant melanoma diagnosis
based on images processing. Each method consists of
different algorithms, architectures, datasets, and techniques
that were used for images preprocessing, features extraction
and selection, and classification in order to diagnose
malignant melanoma.

Table- IV: Applied methodsto diagnose malignant

melanoma
ID Methods Source
MO01 Otsu’s Thresholding, ABCD Rule, CFS, ReliefF, [6]
Linear Forward Selection, Greedy, SVM, Naive
Bayes
MO02 Otsu’s Thresholding, GLCM, MRF, LBP, LIPU [7
MO03 HSV, GLCM, SVM [8]
M04 G-Opt, Bilt-Sp, FCM, Otsu’s Thresholding, [9]
Fractional Poisson, SVM, AdaBoost-M 1, k-NN
MO05 FCRN, SVM, SoftMax [20]
MO06 ResNet-50, Inception V3 [112]
MO7 VGG, ResNet-50, Inception V3, SVM, Logistic [12]
Regression, Naive Bayes, AdaBoost, Random
Forest
M08 Flood-filling, Otsu’s Thresholding, Canny [13]
M09 SMOTE, VGG19 [14]
M10 Finlayson, VGG19-UNet, DeeplabV 3+ [15]
M11  ResNet-50, FV, SVM [24]

Rosado et al. [6] used an adaptative algorithm for images
segmentation based on Otsu’s Thresholding [25]. In order to
perform features extraction, ABCD Rule [26, 27, 28] was
applied. Four methods were applied for features selection:
Correlation based Feature Selection (CFS), ReliefF, Linear
Forward Selection and Greedy [29,30]. Finaly, two
classifiers were used for classification task: Naive Bayes and
Support Vector Machine (SVM). Rosado et al. [6] achieved a
Sensitivity of 86.0%, a Specificity of 73.0% and, an Accuracy
of 80.0%. Saez et a. [7] classified melanoma lesions
according to their thickness. Otsu’s Thresholding [32], Gray
level co-occurrence matrix (GLCM) [33], Markov random
fields (MRF) [34] and Local binary pattern (LBP) [35] were
used for features extraction. To perform the classification,
Logistic regression using Initial variables and Product Units
(LIPU) was applied, which is a combination of a logistic
regression model with a Product Unit Neural Network
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(PUNN) [36, 37]. The Accuracy was 77.6% in the first case
(two classes) and 68.4% in the second case (three classes).
Waheed et al. [8] for features extraction analyzed the Color,
using the HSV color space (Hue, Saturation and Value), and
the Texture, applying GLCM. An SVM classifier was used.
The Accuracy was 96% when used MATLAB and 95% when
used Weka. Al-abayechi et al. [9] during the images
preprocessing applied morphological operations and Median
filters to reduce images noise. For images segmentation,
G-Opt [38], Bilt-Sp [39], fuzzy c-mean (FCM) [40] and
Otsu’s Thresholding [41] were applied. To perform features
extraction, texture was analyzed using the fractional Poisson
process proposed by Laskin [42]. In the classification task, an
SVM classifier with Radial basis function (RBF) asits kernel
function [43] was applied, also AdaBoost-M1 [44] and k-NN
[45] were used. AdaBoost-M 1 achieved the best resultswith a
CCR, Sensitivity and Specificity of 100% in the three
proposed models. Yu et a. [10] built a fully convolutional
residua network (FCRN) [47], its input consisted of images
with different sizes and its output were score masks with the
same size. Data augmentation was applied to increase the
robustness and reduce the overfitting. SVM and SoftMax
were used for classification. The FCRN was tested with
different depths, the best was the FCRN-50, which had and
Accuracy of 94.9%.

Shanin et a. [11] applied data augmentation to increase
data and reduce network overfitting. They assembled two
Deep Learning architectures: ResNet-50 [47] and Inception
V3 [50], the optimization a gorithm Adam and a batch size of
16 were used for training. The Accuracy achieved was 89.9%
in the classification of seven skin diseases.

Maia et a. [12] extracted the Region of Interest (ROI) of
each image and standardized the images size. For features
extraction, VGG16 and VGG19 [52], ResNet-50 [47] and
Inception V3 [53] were used. Six different classifiers were
tested: Logistic Regression [54], Support Vector Machine
[55] with Linear and Radial kernels, Naive Bayes [56],
AdaBoost [57] and Random Forest [58]. The best Accuracy
was 92.50%, achieved by the combination of VGG19 with
Logistic Regression, and Inception V3 with Logistic
Regression. Gupta et a. [13] built a methodology for skin
lesions segmentation. They converted RGB images to gray
scale, then applied flood-filling and Otsu’s Thresholding.
Finally, to perform the segmentation, a border detection
operation based on Canny was used. Also, morphological
operations such as closing were applied to detect a complete
lesion. The Jaccard Index was 89.24%.

Jaworek-K orjakowska et al. [14] presented a methodology
for melanoma thickness analysis. During the images
preprocessing, hoise removal was performed, aso
segmentation masks and Synthetic Minority Oversampling
TEchnique (SMOTE) [59] were applied to generate more
data For classfication, VGG19 [52] with a
densely-connected classifier [60] was used. The Average
Accuracy was 87.2%. Ali et al. [15] proposed a novel
methodology for skin lesions segmentation.
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The Shades of Gray method proposed by Finlayson [61]
was used for images preprocessing. Data augmentation was
applied to reduce overfitting.

They assembled two new Deep Learning architectures:
VGG19-UNet and DeeplabV 3+. The Accuracy was 93.5% in
the segmentation of skin lesions.

Yuet al. [24] standardized the images size, then normalized
the images and applied data augmentation to increase images
guantity. ResNet-50 [47] was used for features extraction.
Fisher Vector Encoding Strategy (FV) [49, 51] was applied to
encode features. An SVM classifier with Chi-squared (chi2)
kernel [46, 48] was trained. The best Accuracy was 86.54%,
which was achieved by the fusion DCNN-FV using
ResNet-50.

B. Systems(Q2)

The second classification corresponds to the selected
studies which implemented “Systems” to detect and diagnose
malignant melanoma based on images analysis. Table V
showsthe proposed systems that were found in the systematic
literature review.

Table- V: Developed systemsto diagnose malignant

melanoma
1D Systems Source
S01  Mobile application [16, 20]
S02  Visual recognition system [17]
S03  Completely automated system for skin lesions [18]
diagnosis
S04 Automated system for melanoma detection [19]

Abuzaghleh et al. [ 16] developed a mobile application with
two components:. the first one sent alerts to prevent sunburn
with UV radiation [62], and the second one was a modul e that
classified dermoscopic imagesin real time, using SVM [63],
the Accuracy was 96.3%, 95.7% and 97.5% in the
classification of benign lesions, atypica and melanoma
respectively. On the other hand, Alizadeh et a. [20] proposed
amobile application for images classification into melanoma
or no melanoma, which consisted of two methods, the first
one performed all of its operations in the same mobile device
using a Normal Bayesian Classifier [64], and the second one
sent extracted features to a server where an SVM classifier
[55] was applied, the second method achieved the best
Accuracy of 96.67%.

Codella et al. [17] proposed a visual recognition system
which consisted of two components: dermoscopic images
segmentation and classification. A fully convolutional
network structure [65] was used for lesions segmentation. To
perform the classification, they assembled Deep residual
networks [47], convolutional neural networks (CNN) [66],
fully convolutional U-Net architecture [67] and used an SVM
classifier. The Accuracy was 80.7%.

Hasija et a. [18] implemented a completely automated
system for skin lesions diagnosis. Data augmentation was
performed using SMOTE, also noise was removed from each
image. VGG19 was used for classification, but its last layer
was an SVM classifier. The Accuracy was 95.3%.

Mustafa et a. [19] developed an automated system for
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melanoma detection based on the analysis of skin lesions
pictures. Image enhancement was performed and GrabCut
[68] was used for segmentation. ABCDE Rule [69] was
considered for features extraction. An SVM classifier [70]
was applied, the Accuracy was 86.67%.

C. CAD Systems(Q3)

This classification corresponds to the selected studies
which implemented Computer Aided Diagnosis Systems
(“CAD Systems”), which are specialized systems for clinical
use, in order to diagnose malignant melanoma based on
images processing. Table VI shows the “CAD Systems” that
were found in the systematic review of the literature.

Table- VI: CAD Systemsfor malignant melanoma

diagnosis
1D CAD Systems Source
CADOL  CAD System with k-NN [21]
CAD02 CAD System with Convolutional Neural [22]
Network (CNN)
CADO03 CAD System with SYM [23]

Moussaet a. [21] proposed a CAD System for skin lesions
images classification intro cancerous (melanoma) or not
cancerous. Thresholding was applied for lesions
segmentation. ABD Rule was considered for features
extraction. K-NN was used for classification, and the
Accuracy was 89%.

Ge et a. [22] proposed a CAD System for melanoma
images segmentation and classification. To extract the Region
of Interest (ROI), afully convolutional neural network (FCN)
was applied, then a convolutional neural network (CNN) and
GLCM were used to extract features. A Multi-Layer
Perceptron (MLP) was used for classification, and the
Accuracy was 93%.

Hameed et al. [23] developed a CAD System for skin
lesions detection based on images processing. Otsu’s
Thresholding was applied for segmentation, and GLCM [31]
was used for features extraction. Different classifiers were
used: SVM, k-NN, decisions trees and assembled classifiers.
The best Accuracy was 92.3% in the classification of three
classes, and 83.0% in the classification of six classes, both
achieved by Quadratic SVM.

IV. ANALYSISOFRESULTS

A. Methods (Q1)

According to the results that were obtained from the
systematic literature analysis, 11 studies correspond to
different “methods” for malignant melanoma diagnosis based
on images processing, which represents 58% of the total
number of revised studies (see Table I11). It is observed that
the most used method for skin lesions segmentation was
Otsu’s Thresholding, which wasapplied in the studies|[6, 7, 9,
13]. Considering the methods for images classification,
Support Vector Machine (SVM) was the most used, which
was applied in the studies [6, 8, 9, 10, 12, 24].
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Furthermore, al the revised studies consist of hybrid
methods, is that is, they combined different algorithms and
techniqgues for preprocessing, segmentation, features
extraction and selection, and classification [6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 24].

B. Systems(Q2)

Regarding the revised studies that proposed “systems” for
malignant melanoma diagnosis, 5 were found, which
represents 26% of the total number of revised studies (see
Table I11). It is observed that all proposed systems used the
classifier Support Vector Machine (SVM), which was applied
in the studies [16, 17, 18, 19, 20], and achieved the best
Accuracy of 97.5% in malignant melanoma classification
[16]. Furthermore, two of the revised studies proposed mobile
applications for malignant melanoma detection [16, 20], and
one of them [16] implemented a novel component to send
alertsin order to prevent sunburn with UV radiation.

C. CAD Systems (Q3)

Finally, 3 studies proposed “CAD systems” for malignant
melanoma diagnosis based on images processing, which
represents 16% of the total number of revised studies (see
Tablelll). It is observed that all these studies implemented a
component for skin lesions segmentation [21, 22, 23].
Furthermore, the 3 studies that correspond to “CAD systems”
used different classifiers, from which, Multi-Layer
Perceptron (MLP) achieved the best result with an Accuracy
of 93% in melanoma classification [22].

D. Crossanalysis

In order to obtain a deeper analysis about the different
proposalsthat have been analyzed previously, acrossanalysis
has been made between: “Methods”, “Systems” and “CAD
Systems” (see Table VII). As we can observe, the most used
method for classification was Support Vector Machine (M03,
MO04, M05, M07), while LIPU (M02), Inception V3 (M06),
Canny (M08) and VGG19 (M09) were the least used methods
for malignant melanoma diagnosis. Regarding the systems
and CAD systems, most of them used different combinations
of techniques for both images preprocessing (image
enhancement, segmentation, features extraction and
selection), asfor classification, (S01, S02, SO3, S04, CADO2,
CADO03). On the other hand, CADO1 was the only system that
did not combine different techniques for malignant melanoma
diagnosis.

Table- VII: Crossanalysis

Systems CAD Systems
S0l | S02 | S03 | S04 | CADOL | CADO2 | CADO3

MoL v v+ v v
M02 v v
M03 v v v v v v
M04 v v v v v v
M05 v v v v v v
MO06

M07 v v v v v v
M08 v
M09 v v

M10 v | v v

M1l v v v v v
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V. CONCLUSIONS

This paper presented a Systematic Literature Review of
540 articles related to techniques for malignant melanoma
diagnosis based on images processing, from which, the
abstract of 125 studieswere reviewed, which helped to obtain
19 relevant articles for this study (see Fig. 1). The selected
articles were analyzed considering the proposed taxonomy
(see Fig. 3). The conclusions of this work have been made
according to the research questions that were elaborated in the
planning of the review (see Section I1). Most of the revised
studies, with atotal number of 11 studies, presented different
“methods” for malignant melanoma diagnosis, and the most
used method for images classification was Support Vector
Machine. Regarding the “systems” and “CAD systems”, most
of these studies used two man components. images
preprocessing and classification. Furthermore, a cross
analysis has been made between the components of the
proposed taxonomy (methods, systems, CAD systems), where
it wasidentified that the Architecture of Convolutional Neural
Networks (Inception V3), has not been used by any of the
studies that implemented systems, which suggests new
research applying this technique.
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