

Collaboration Graph on Abel's Prize Winners -II

G K Yogambiga, N.Srinivasan

Abstract: Construction of Collaboration graph is an interesting task. Here we take up a Problem for Abel's Prize Winners centered at Paul Erdős. The number of Abel's prize winners as on 2019 is 20, But the collaboration Graph G has 47 vertices and 87 edges and gives some properties. We constructed the collaboration graph G of Abel's Prize Winners in [11]. In this paper, we analyzed the some properties of G like Distance, Diameter, Eccentricity, Chromatic number, Chromatic index and etc.

Keywords : Distance , Diameter, Eccentricity, Chromatic number, Chromatic index.

I. INTRODUCTION

The collaboration graph is a graph model where the vertices are researchers (dead or alive) from all academic disciplines and where two distinct researchers are joined by an edge whenever they published an article or book. The notation $d(u, v)$ is the distance between two vertices u and v which is equal to the number of edges in the shortest path between u and v . Clearly $d(u, u) = 0$. We now consider the collaboration sub graph centered at Paul Erdős (1913-1996). For a researcher v , the number $d(\text{Erdős}, v)$ is called the Erdős number of v . That is, Paul Erdős himself has Erdős number 0 and his coauthors have Erdős number 1. People not having Erdős number 0 or 1 but who has published with someone with Erdős number 1 have Erdős number 2, and so on. Those who are not linked in this way to Paul Erdős have Erdős number ∞ . 511 people have Erdős number 1, and over 11000 have Erdős number 2. For more details see [1,5,6,8].

II. ABOUT ABEL'S PRIZE

Manuscript received on May 25, 2020.
Revised Manuscript received on June 29, 2020.
Manuscript published on July 30, 2020.

* Correspondence Author

G K Yogambiga *,Associate Professor, Department of Mathematics Panimalar Engineering College ,Chennai -600123 and Research Scholar in St. Peter's Institute of Higher Education and Research ,Avadi, Chennai -600 054,India .E-mail: yogaa.lakhs@gmail.com

N.Srinivasan, Professor and Head , Department of Mathematics St. Peter's Institute of Higher Education and Research Avadi,Chennai -600 054.India.E-mail: sri24455@yahoo.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an [open access](#) article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

The Abel Prize was established on 1 January 2002. The purpose is to award the Abel Prize for outstanding scientific work in the field of mathematics. The prize amount is 7.5 million Norwegian Kroner and was awarded for the first time on 3 June 2003. For more details refer [9].

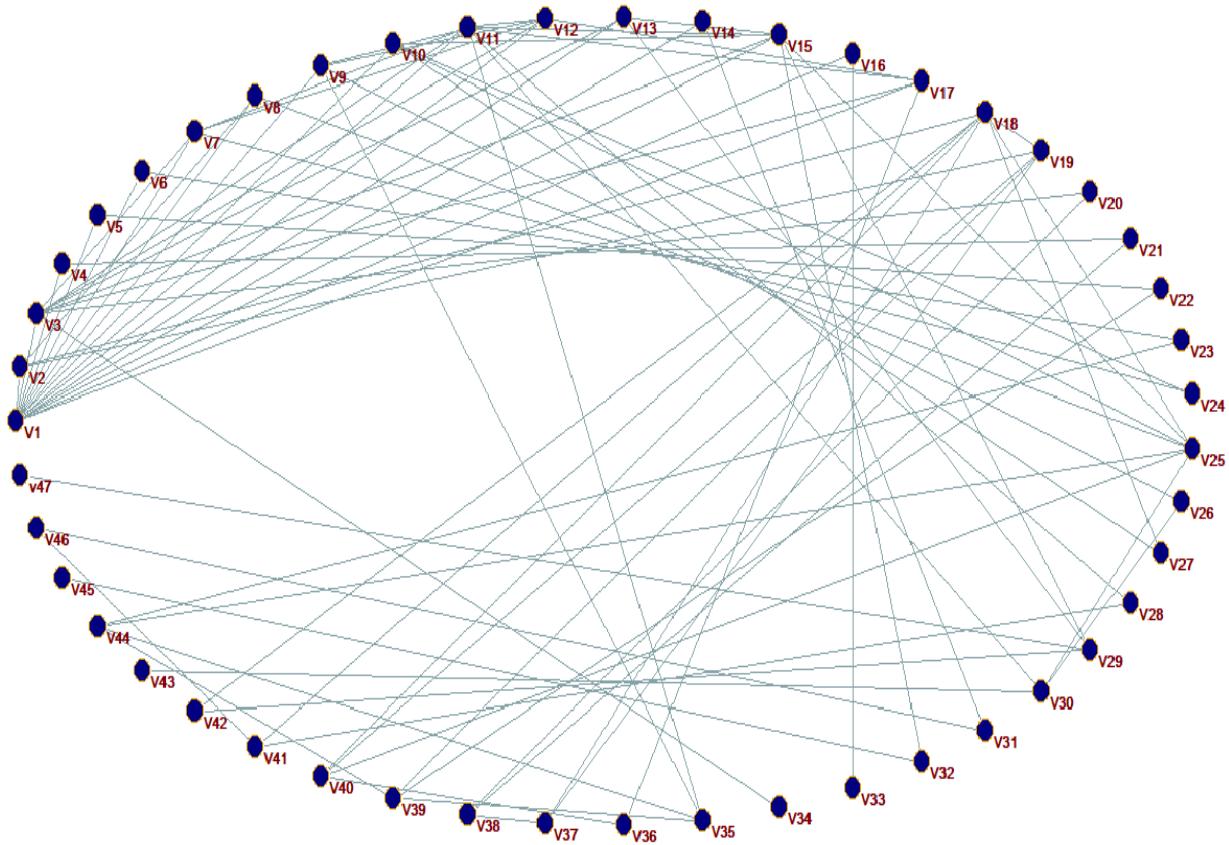
III. CONSTRUCTION OF THE GRAPH G

Construction of Abel's prize winners of Collaboration Graph G is given in [11]. G has 47 vertices. In this vertices, only 16 members (V_2-V_{17}) are directly connected to Paul Erdős by path of length 1(ie. Erdős number 1), Erdős number 2 members are $V_{18}-V_{36}$, the remaining members with Erdős number 3 namely $V_{37}-V_{47}$. If there is a coauthor relationship between any 2 co authors , then there is a path between that 2 co-authors. The vertex v_1 is the Paul Erdős with Erdős number 0. For details refer [1-5,7].

The forty seven vertices and eighty seven edges of G are given below.

$V(G)=\{ v_1, v_2, \dots, v_{47} \}$ where $v_1 = \text{Paul Erdős}$, $v_2 = \text{Sarvadaman Chowla}$, $v_3 = \text{FanChung}$, $v_4 = \text{Irving Kaplansky}$, $v_5 = \text{Vilmos Totik}$, $v_6 = \text{Kai Lai Chung}$, $v_7 = \text{Béla Bollobás}$, $v_8 = \text{Harold Davenport}$, $v_9 = \text{János Pach}$, $v_{10} = \text{Hugh L. Montgomery}$, $v_{11} = \text{Noga Alon}$, $v_{12} = \text{Endre Szemerédi}$, $v_{13} = \text{Peter C. Fishburn}$, $v_{14} = \text{Alan J. Hoffman}$, $v_{15} = \text{AndrewM. Odlyzko}$, $v_{16} = \text{Stanisław Hartman}$, $v_{17} = \text{László Babai}$, $v_{18} = \text{Jean-Pierre Serre}$, $v_{19} = \text{Armand Borel}$, $v_{20} = \text{Shlomo Sternberg}$, $v_{21} = \text{Richard Friederich Arens}$, $v_{22} = \text{Lennart Axel Edvard Carleson}$, $v_{23} = \text{Srinivasa R. S. Varadhan}$, $v_{24} = \text{John Griggs Thompson}$, $v_{25} = \text{Enrico Bombieri}$, $v_{26} = \text{Mikhael Gromov}$, $v_{27} = \text{John Torrence Tate}$, $v_{28} = \text{Shmuel Friedland}$, $v_{29} = \text{Daniel S. Freed}$, $v_{30} = \text{Jean Bourgain}$, $v_{31} = \text{Harold W. Kuhn}$, $v_{32} = \text{Christopher M. Skinner}$, $v_{33} = \text{Yves F. Meyer}$, $v_{34} = \text{Robert P. Langlands}$, $v_{35} = \text{Micha Sharir}$, $v_{36} = \text{William M. Kantor}$, $v_{37} = \text{Michael Francis Atiyah}$, $v_{38} = \text{Isadore Manuel Singer}$, $v_{39} = \text{Peter David Lax}$, $v_{40} = \text{Jacques Tits}$, $v_{41} = \text{John Willard Milnor}$, $v_{42} = \text{Pierre Deligne}$, $v_{43} = \text{Yakov Grigor'evich Sinai}$, $v_{44} = \text{Louis Nirenberg}$, $v_{45} = \text{Andrew J. Wiles}$, $v_{46} = \text{John Forbes Nash Jr.}$, $v_{47} = \text{Karen Keskulla Uhlenbeck}$.

$E(G)=\{ e_1, e_2, \dots, e_{87} \}$ where $e_1 = (v_1, v_2)$, $e_2 = (v_1, v_3)$, $e_3 = (v_1, v_4)$, $e_4 = (v_1, v_5)$, $e_5 = (v_1, v_6)$, $e_6 = (v_1, v_7)$, $e_7 = (v_1, v_8)$, $e_8 = (v_1, v_9)$, $e_9 = (v_1, v_{10})$, $e_{10} = (v_1, v_{11})$, $e_{11} = (v_1, v_{12})$, $e_{12} = (v_1, v_{13})$, $e_{13} = (v_1, v_{14})$, $e_{14} = (v_1, v_{15})$, $e_{15} = (v_1, v_{16})$, $e_{16} = (v_1, v_{17})$, $e_{17} = (v_2, v_8)$, $e_{18} = (v_2, v_{18})$, $e_{19} = (v_2, v_{19})$, $e_{20} = (v_3, v_7)$, $e_{21} = (v_3, v_{11})$, $e_{22} = (v_3, v_{12})$, $e_{23} = (v_3, v_{13})$, $e_{24} = (v_3, v_{15})$, $e_{25} = (v_3, v_{17})$, $e_{26} = (v_3, v_{20})$, $e_{27} = (v_3, v_{34})$, $e_{28} = (v_4, v_{21})$, $e_{29} = (v_5, v_{22})$, $e_{30} = (v_6, v_{23})$, $e_{31} =$



Collaboration Graph on Abel's Prize Winners -II

$e_{32} = (v_7, v_{11})$, $e_{33} = (v_7, v_{24})$, $e_{34} = (v_8, v_{25})$, $e_{35} = (v_8, v_{11})$, $e_{36} = (v_9, v_{12})$, $e_{37} = (v_9, v_{26})$, $e_{38} = (v_9, v_{35})$, $e_{39} = (v_{10}, v_{15})$, $e_{40} = (v_{10}, v_{24})$, $e_{41} = (v_{10}, v_{25})$, $e_{42} = (v_{10}, v_{27})$, $e_{43} = (v_{11}, v_{12})$, $e_{44} = (v_{11}, v_{15})$, $e_{45} = (v_{11}, v_{17})$, $e_{46} = (v_{11}, v_{28})$, $e_{47} = (v_{11}, v_{30})$, $e_{48} = (v_{11}, v_{35})$, $e_{49} = (v_{12}, v_{17})$, $e_{50} = (v_{13}, v_{15})$, $e_{51} = (v_{13}, v_{29})$, $e_{52} = (v_{14}, v_{31})$, $e_{53} = (v_{15}, v_{25})$, $e_{54} = (v_{15}, v_{29})$, $e_{55} = (v_{15}, v_{32})$, $e_{56} = (v_{16}, v_{33})$,
 $e_{57} = (v_{17}, v_{36})$, $e_{58} = (v_{18}, v_{19})$, $e_{59} = (v_{18}, v_{25})$, $e_{60} = (v_{18}, v_{27})$,
 $e_{61} = (v_{18}, v_{37})$, $e_{62} = (v_{18}, v_{40})$, $e_{63} = (v_{18}, v_{41})$, $e_{64} = (v_{18}, v_{42})$,
 $e_{65} = (v_{19}, v_{37})$, $e_{66} = (v_{19}, v_{39})$, $e_{67} = (v_{19}, v_{40})$, $e_{68} = (v_{20}, v_{38})$,

$$\begin{aligned}
e_{69} &= (v_{21}, v_{38}), \quad e_{70} = (v_{22}, v_{39}), \quad e_{71} = (v_{23}, v_{44}), \quad e_{72} = (v_{25}, v_{30}), \\
e_{73} &= (v_{25}, v_{40}), \quad e_{74} = (v_{25}, v_{44}), \quad e_{75} = (v_{26}, v_{30}), \quad e_{76} = (v_{28}, v_{41}), \\
e_{77} &= (v_{29}, v_{42}), \quad e_{78} = (v_{30}, v_{43}), \quad e_{79} = (v_{31}, v_{46}), \quad e_{80} = (v_{32}, v_{45}), \\
e_{81} &= (v_{35}, v_{39}), \quad e_{82} = (v_{35}, v_{44}), \quad e_{83} = (v_{36}, v_{40}), \quad e_{84} = (v_{37}, v_{38}), \\
e_{85} &= (v_{39}, v_{44}), \quad e_{86} = (v_{41}, v_{46}), \quad e_{87} = (v_{47}, v_{19}).
\end{aligned}$$

Using Pajek program ,we constructed the graph G . The following graph is the visualization of Abel's Prize Winners Collaboration Graph G . For more details refer [10].

Figure.1 Graph G

IV. DIAMETER , RADIUS, ECCENTRICITY OF THE GRAPH G

The maximum distance between a vertex v and any other vertex v_i of a graph G is called the **Eccentricity** $e(v)$ of a vertex v for all i .

The minimum Eccentricity of any vertex of a graph G is Called the **Radius $r(G)$** of G .

The maximum Eccentricity of any vertex of a graph G is called the **Diameter** $dm(G)$ of G .

Proposition:4.1 Median of the graph G is the complete graph with single vertex ie. $M(G)=K_1$

Proof: First Calculate the distance of each vertex of G

PROOF. First calculate the distance of each vertex of G

$$d(v_1) = \sum_{v \in G} d(v_1, v) = d(v_1, v_2) + d(v_1, v_3) + d(v_1, v_4) + d(v_1, v_5) + d(v_1, v_6) + d(v_1, v_7) + d(v_1, v_8) + d(v_1, v_9) + d(v_1, v_{10}) + d(v_1, v_{11}) + d(v_1, v_{12}) + d(v_1, v_{13}) + d(v_1, v_{14}) + d(v_1, v_{15}) + d(v_1, v_{16}) + d(v_1, v_{17}) + d(v_1, v_{18}) + d(v_1, v_{19}) + d(v_1, v_{20}) + d(v_1, v_{21}) + d(v_1, v_{22}) + d(v_1, v_{23}) + d(v_1, v_{24}) + d(v_1, v_{25}) +$$

$$\begin{aligned}
& +3+3+3+3+3+3+3+3=87, \quad d(v_2)=116, \quad d(v_3)=116, \\
& d(v_4)=126, \quad d(v_5)=127, \quad d(v_6)=127, \quad d(v_7)=124, \quad d(v_8)=117, \\
& d(v_9)=119, \quad d(v_{10})=109, \quad d(v_{11})=111, \quad d(v_{12})=119, \quad d(v_{13})=120, \\
& d(v_{14})=127, \quad d(v_{15})=110, \quad d(v_{16})=130, \quad d(v_{17})=119, \quad d(v_{18})=127 \\
& , \quad d(v_{19})=142, \quad d(v_{20})=153, \quad d(v_{21})=160, \quad d(v_{22})=162, \quad d(v_{23})=161, \\
& d(v_{24})=162, \quad d(v_{25})=138, \quad d(v_{26})=150, \quad d(v_{27})=153, \quad d(v_{28})=157, \\
& d(v_{29})=152, \quad d(v_{30})=154, \quad d(v_{31})=154, \quad d(v_{32})=155, \quad d(v_{33})=174, \\
& d(v_{34})=155, \quad d(v_{35})=152, \quad d(v_{36})=153, \quad d(v_{37})=165, \quad d(v_{38})=201, \\
& d(v_{39})=162, \quad d(v_{40})=157, \\
& d(v_{41})=155, \quad d(v_{42})=166, \\
& d(v_{43})=186, \quad d(v_{44})=162.
\end{aligned}$$

Collaboration Graph on Abel's Prize Winners -II

$V_{10}, V_{14}, V_{16}, V_{28}, V_{30}, V_{38}, V_{40}, V_{42}, V_{46}, V_{47}$. Color S_2 by color 2. $S_3 = \{v_7, v_8, V_{13}, V_{17}, V_{19}, V_{27}, V_{31}, V_{32}, V_{33}, V_{41}, V_{44}\}$. Color S_3 by color 3. $S_4 = \{v_{12}, v_{15}, v_{39}\}$, color it by color 4. $S_5 = \{v_{11}, v_{25}, v_{36}, v_{37}\}$, color it by color 5. Now all the vertices of G are colored

and any two adjacent vertices are not colored with the same color. Hence G is 5-Chromatic Graph. ie $\chi(G) = 5$. Refer Figure.2

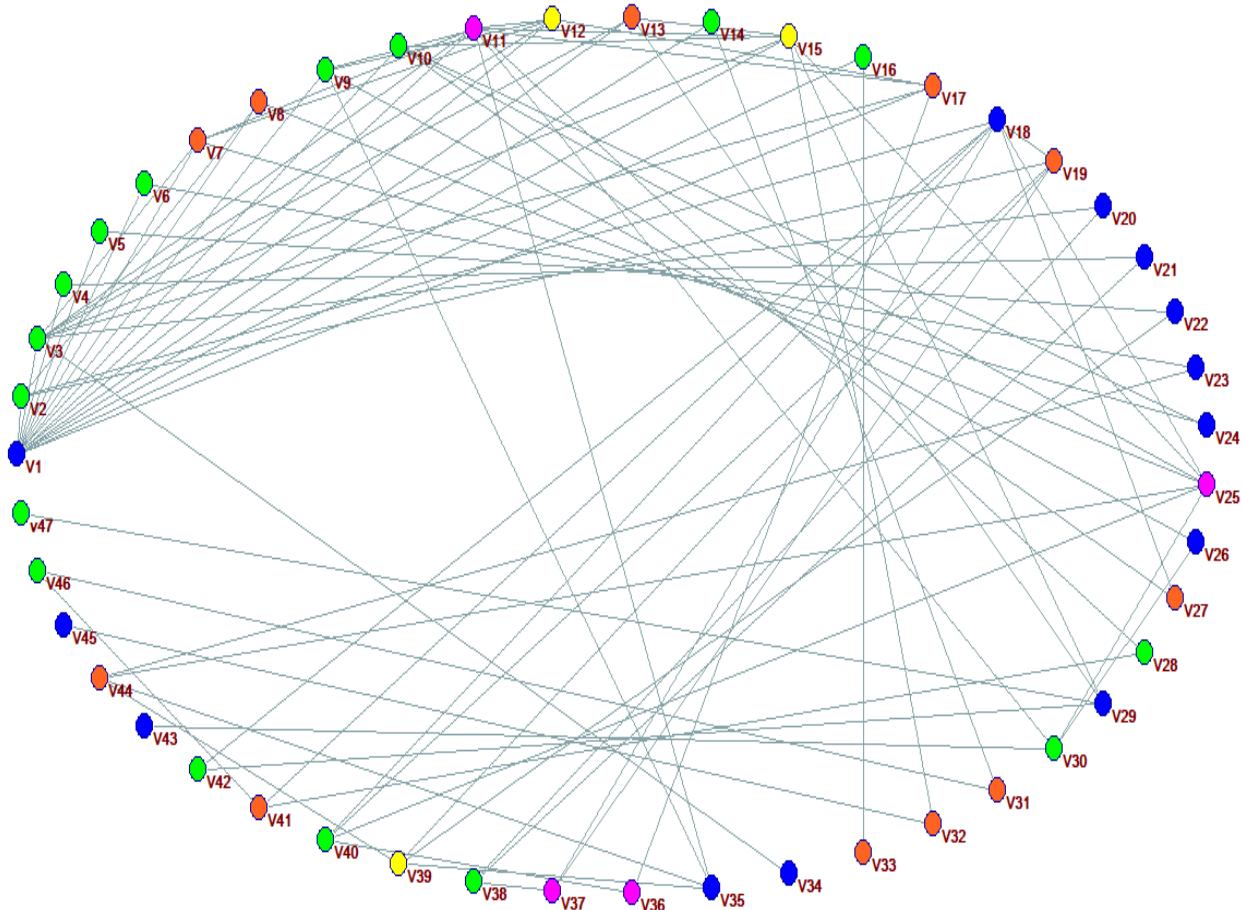


Figure.2

Observation: 7.2

(BROOK'S THEOREM). Let G be a connected graph. Then $\chi(G) \leq \Delta(G)$ unless G is either a complete graph or an odd cycle.

Clearly G is not a complete graph, so it satisfies $5 = \chi(G) \leq \Delta(G) = 16$. by Proposition :7.1

Proposition:7.3 $\chi'(G) = 16$, $\chi'(G)$ is the Chromatic index of G .

Proof: Consider the Collaboration Graph G which is a simple and connected graph with vertices $V = \{v_1, v_2, \dots, v_{47}\}$ and the edges $E = \{e_1, e_2, \dots, e_{87}\}$. Let $E_1 \subset E$ is the set of non-adjacent edges where $E_1 = \{e_1, e_{22}, e_{37}, e_{47}, e_{59}, e_{65}, e_{77}, e_{82}\}$. color E_1 by 1. and then similarly consider the another set of non-adjacent edges $E_2 = \{e_2, e_{43}, e_{53}, e_{60}, e_{66}\}$. Color E_2 by color 2. $E_3 = \{e_3, e_{25}, e_{44}, e_{61}, e_{74}\}$. Color E_3 by color 3. $E_4 = \{e_4, e_{24}, e_{63}, e_{72}\}$. color it by color 4. $E_5 = \{e_{39}, e_{73}, e_5, e_{18}, e_{23}, e_{46}\}$. Color E_5 by color 5. $E_6 = \{e_6, e_{21}\}$. Color it by color 6. $E_7 = \{e_7, e_{40}, e_{57}\}$. Color it by color 7. $E_8 = \{e_8\}$. Color it by 8. $E_9 = \{e_9, e_{68}, e_{19}, e_{27}, e_{28}, e_{29}, e_{30}, e_{31}, e_{34}, e_{38}, e_{49}, e_{51}, e_{55}, e_{56}, e_{62}, e_{70}, e_{78}, e_{79}, e_{85}\}$. Color it by color 9. $E_{10} = \{e_{10}\}$. Color it by color 10. $E_{11} = \{e_{11}\}$. Color it by color 11. $E_{12} = \{e_{12}\}$. Color it by color 12. $E_{13} = \{e_{13}, e_{32}, e_{45}\}$. Color it by color 13. $E_{14} = \{e_{83}, e_{14}\}$. Color it by color 14. $E_{15} = \{e_{15}, e_{42}, e_{26}, e_{33}, e_{36}, e_{48}\}$.

$e_{50}, e_{52}, e_{58}, e_{69}, e_{70}, e_{75}, e_{87}, e_{80}, e_{86}, e_{71}$. Color it by color 15. $E_{16} = \{e_{41}, e_{16}, e_{17}, e_{20}, e_{35}, e_{54}, e_{64}, e_{67}, e_{81}, e_{84}\}$. Color it by color 16. Now all the edges of G are colored and any two adjacent edges are not colored with the same color. Hence G is 16 Edge _Colorable. ie. $\chi'(G) = 16$. Refer Figure 3.

Observation:7.4 (Gupta [14], Vizing [13]). If G is a graph, then $\chi'(G) \leq \Delta(G) + 1$.

In G , $\Delta(G) = 16$, From Proposition :7.3 , $\chi'(G) = 16$. Hence $16 = \chi'(G) \leq \Delta(G) + 1 = 16 + 1 = 17$.

VIII. CONCLUSION

In this paper, we have analyzed the some properties of the graph G like Distance, Diameter, Eccentricity and Chromatic number and Chromatic index.

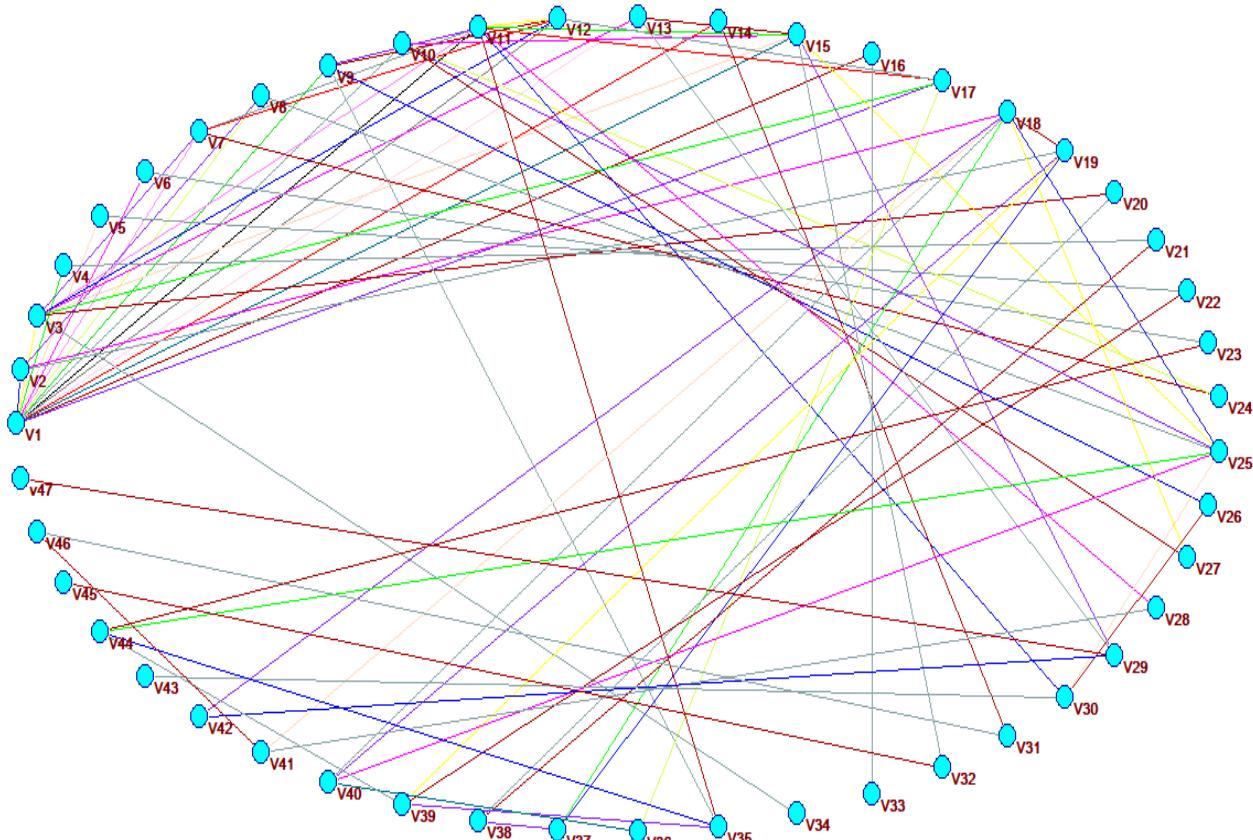


Figure. 3

REFERENCES

1. V. Yegnanarayanan and G.K. Umamaheswari, On Rolf Nevanlinna Prize Winners Collaboration Graph, The Journal of Combinatorial Mathematics and Combinatorial Computing, JCMCC, Volume 79, 2011, pp .43-58, ISSN 0835-3026, Indexed in MathSciNet, Zentralblatt, Google scholar.
2. V. Yegnanarayanan, G.K.Umamaheswari., On Rolf Nevanlinna Prize Winners Collaboration GraphII, International Journal of Scientific and Research India publications, 2012, Volume 2, issue 4, pp.354-367, ISSN 2250-3153.
3. V Yegnanarayanan, GK Umamaheswari ,A Note on the Importance of Collaboration Graphs, Int. J. of Mathematical Sciences and Applications 1 (3), 1113-1121
4. V Yegnanarayanan, GK Umamaheswari, On Rolf Nevanlinna Prize Winners Collaboration Graph-III ,Journal of Mathematical and Computational Science 3 (2), 419-455.
5. Jerrold W. Grossman, The Erdős Number project World Wide Web Site,
6. <http://www.oakland.edu/~grossman/Erdos/shp.html>.
7. <https://mathscinet.ams.org/mathscinet/freeTools.html?version=2>.
8. Paul Erdős – Wikipedia en.wikipedia.org/wiki/Paul_Erdős
9. <https://www.abelprize.no/>
10. <http://mrvar.fdv.uni-lj.si/pajek/>
11. G. K. Yogambiga,N.Srinivasan, Collaboration graph On Abel's Prize Winners ,Internal journal of Management and Humanities, volume 4, issue 8, 130-133
12. C.R.J.Clapham, Hamiltonian arcs in self complementary graphs ,Discrete math.8 (1974),251-255.
13. V. G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz. 3:25-30,1964.
14. R. P. Gupta. The chromatic index and the degree of a graph. Not. Amer. Math. Soc. 13:719, 1966
15. A note on the bounded fragmentation property and its applications in network reliability, Mohammad Taghi Hajiaghayi, Mahdi Hajiaghayi, European Journal of Combinatorics 24 (2003) 891-896.

AUTHORS PROFILE

Dr.N.Srinivasan, professor and head of the department of mathematics in St.Peter's Institute of Higher education(SPIHER),Chennai, India..His teaching experience is 40 years .His area of Research includes Graph theory. He has Published many papers in reputed national and international journal's .and Conducted/attended National conferences and workshops. He is Guiding M. Phil and Ph.D research scholars. He published a book of Engineering mathematics I & II . He received many awards from reputed organizations .He is a member of world research organization.

G.K.Yogambiga ,born on 21 March 1979. She is working as an Associate professor in Panimalar engineering college ,Chennai, India . Her teaching experience is 15 years. She did her Under graduation in Sree Sarada College for Women ,Post graduation in St.John's College, M.Phil in Manonmaniam Sundaranar University at Tirunelveli and also she completed PGDCA in Manonmaniam Sundaranar University. She is a research scholar and Pursuing her Ph.D under the supervision of Dr.N.Srinivasan in the Department of Mathematics in St. Peter's Institute of Higher education (SPIHER), Chennai. She has attended Faculty development programs and Completed NPTEL course in Graph theory. Her area of Research is Collaboration graph in Graph theory.