Fuzzy $\alpha - \psi^*$-Irreducible Spaces

M. Rowthri, B. Amudambigai

Abstract: In this paper, the concept of ψ^* operator on a family of fuzzy α-open sets in a fuzzy topological space is introduced. Also, the concepts of fuzzy $\alpha - \psi^*$-irreducible spaces, fuzzy $\alpha - \psi^*$-generic sets and fuzzy $\alpha - \psi^*$-quasi-Sober spaces are initiated and some properties are discussed.

Keywords : operator on $Fac(X, \tau)$, fuzzy $\alpha - \psi^*$-generic sets , fuzzy $\alpha - \psi^*$-irreducible spaces, fuzzy $\alpha - \psi^*$-quasi-Sober spaces

I. INTRODUCTION

L.A. Zadeh[8] initiated fuzzy set in 1965. In 1968, Chang [2] characterized fuzzy topological space. Njastad [5] introduced α-open sets. In the same sprit Bin Shahna [1] defined fuzzy α-open sets and fuzzy α-closed sets. The idea of an irreducible or hyperconnected topological space has been studied by T. Thompson. In this paper, the concept of ψ^* operator on a family of fuzzy α-open sets in a fts is introduced. Also, the concepts of fuzzy $\alpha - \psi^*$-irreducible spaces, fuzzy $\alpha - \psi^*$-generic sets and fuzzy $\alpha - \psi^*$-quasi-Sober spaces are initiated and some properties are discussed.

II. PRELIMINARIES

This section contains basic definitions and preliminary results needed for this paper.

Definition 2.1 [4] Let X be a topological space.

(i) X is irreducible, if $X \neq \emptyset$, and whenever $X = Z_1 \cup Z_2$ with Z_i closed, $X = Z_1$ or $X = Z_2$.

(ii) $Z \subset X$ is an irreducible component of X if Z is a maximal irreducible subset of X.

Definition 2.2 [3] A subset $F \neq \emptyset$ of a topological space is irreducible if, $F \subseteq A \cup B$ where A and B then $F \subseteq A$ or $F \subseteq B$.

Definition 2.3 [4] A topological space X is said to be quasi-sober if for every irreducible closed subset has a generic point.

Definition 2.4 [6] A fuzzy set μ_X is quasi-coincident with the fuzzy set μ_Y if $\exists x \in X$ such that $\mu_X(x) + \mu_Y(x) > 1$.

Definition 2.5 [7] A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy dense if there exists no fuzzy closed set μ in (X, T) such that $\lambda \preceq \mu$ and $cl(\lambda) = cl(\mu)$.

III. FUZZY $\alpha - \psi^*$-IRREDUCIBLE SPACES

Throughout this paper, fuzzy topological space is shortly denoted by fts. Then $Fac(X, \tau)$, $Fac(X, \tau)$ and FP (X) denote set of all fuzzy α-open sets, fuzzy α-closed sets in (X, τ) and fuzzy points over X respectively.

Definition 3.1 Let (X, τ) be a fts. A fuzzy operator ψ^*: $Fac(X, \tau) \rightarrow I^X$ is defined as, if for each $\mu \in Fac(O, X, \tau)$ with $\mu \neq 0_X$, $F \cap (\mu) \leq \psi^*(\mu)$ and $\psi^*(0_X) = 0_X$.

Remark 3.1 It is easy to check that some examples of fuzzy operators on $Fac(O, X, \tau)$ are the well known fuzzy operators viz. $F \cap$, $F \cup(F \cap)$, $F \cap(F \cap)$, $F \cap(F \cap(F \cap))$ and $F \cap(F \cap(F \cap(F \cap)))$.

Definition 3.2 Let (X, τ) be a fts and ψ^* be a fuzzy operator on $Fac(O, X, \tau)$. Then any $\mu \in Fac(O, X, \tau)$ is called fuzzy $\alpha - \psi^*$-open if $\mu \preceq \psi^*(\mu)$. Then $1_X - \mu$ is called fuzzy $\alpha - \psi^*$-closed.

Notation 3.1 The family of all fuzzy $\alpha - \psi^*$-open (resp. fuzzy $\alpha - \psi^*$-closed) sets in (X, τ) is notated by $F\alpha - \psi^*O(X, \tau)$ (resp. $F\alpha - \psi^*C(X, \tau)$).

Definition 3.3 For any $\mu \in I^X$ in a fts (X, τ) and ψ^* be a fuzzy operator on $Fac(O, X, \tau)$, the fuzzy $\alpha - \psi^*$-interior of μ (briefly, $F\alpha - \psi^*int(\mu)$) is defined by $F\alpha - \psi^*int(\mu) = \cap\{\sigma: \sigma \leq \mu \text{ and } \sigma \in F\alpha - \psi^*O(X, \tau)\}$.

Definition 3.4 For any $\mu \in I^X$ in a fts (X, τ) and ψ^* be a fuzzy operator on $Fac(O, X, \tau)$, the fuzzy $\alpha - \psi^*$-closure of μ (briefly, $F\alpha - \psi^*cl(\mu)$) is defined by $F\alpha - \psi^*cl(\mu) = \cup\{\sigma: \sigma \geq \mu \text{ and } \sigma \in F\alpha - \psi^*C(X, \tau)\}$.

Definition 3.5 Any fts (X, τ) is said to be a fuzzy $\alpha - \psi^*$-irreducible space, where ψ^* is a fuzzy operator on $Fac(O, X, \tau)$ if, for any $\mu_1, \mu_2 \in F\alpha - \psi^*O(X, \tau)$ where $\mu_1 \neq 0_X, \mu_2 \neq 0_X$ and $\mu_1 \cup \mu_2$.

Definition 3.6 Any $\lambda \in I^X$ in a fts (X, τ) is said to be fuzzy $\alpha - \psi^*$-irreducible,
where \(\psi \) is a fuzzy operator on \(FaO(X, r) \), if \(\lambda \neq 0_X \) and \(\lambda \leq (\mu_1 \vee \mu_2) \) where \(\mu_1, \mu_2 \in Fa\alpha - \psi \ast C(X, r) \), then either \(\lambda \leq \mu_1 \) or \(\lambda \leq \mu_2 \). Then the set of all fuzzy \(\alpha - \psi \ast \)-irreducible sets is noted by \(Fa\alpha - \psi \ast I(X, r) \).

Definition 3.7 Any \(\lambda \in I^X \) is called a fuzzy \(\alpha - \psi \ast \)-maximal irreducible set of \(ftS (X, r) \), where \(\psi \ast \) is a fuzzy operator on \(FaO(X, r) \), if there is no \(\mu \in Fa\alpha - \psi \ast I(X, r) \) such that \(\mu > \lambda \). Then collection of all fuzzy \(\alpha - \psi \ast \)-maximal irreducible sets is denoted by \(Fa\alpha - \psi \ast MI(X, r) \).

Definition 3.8 Let \(\psi \ast \) be a fuzzy operator on \(FaO(X_1, r_1) \) and \(FaO(X_2, r_2) \) in a ftss \((X_1, r_1) \) and \((X_2, r_2) \) respectively. Any function \(f : (X_1, r_1) \rightarrow (X_2, r_2) \) is said to be a fuzzy \(\alpha - \psi \ast \)-continuous function if for every \(\mu \in Fa\alpha - \psi \ast O(X_2, r_2) \),
\[
f^{-1}(\mu) \in Fa\alpha - \psi \ast O(X_1, r_1) .
\]

Proposition 3.1 Let \(\psi \ast \) be a fuzzy operator on \(FaO(X_1, r_1) \) and \(FaO(X_2, r_2) \) in a ftss \((X_1, r_1) \) and \((X_2, r_2) \) respectively. Let \(f : (X_1, r_1) \rightarrow (X_2, r_2) \) be a bijective and fuzzy \(\alpha - \psi \ast \)-continuous function. If \(\lambda \in Fa\alpha - \psi \ast I(X_1, r_1) \) then \(f(\lambda) \in Fa\alpha - \psi \ast I(X_2, r_2) \).

Proof. Let \(\mu_1, \mu_2 \in Fa\alpha - \psi \ast C(X_2, r_2) \) such that \(f(\lambda) \leq (\mu_1 \vee \mu_2) \). Then
\[
f^{-1}(f(\lambda)) \leq f^{-1}((\mu_1 \vee \mu_2)) ,
\]
which implies that \(\lambda \leq f^{-1}(\mu_1 \vee \mu_2) \). Then \(f^{-1}(f(\lambda)) = \lambda \), since \(f \) is one-one. Hence \(f(\lambda) \leq \mu_1 \vee \mu_2 \) and hence \(f(\lambda) \leq \mu_2 \) as \(f \) is onto. Therefore \(f(\lambda) \in Fa\alpha - \psi \ast I(X_2, r_2) \).

Remark 3.2 For any \(\lambda \in I^X \) in a ftss \((X, r) \) and \(\psi \ast \) be a fuzzy operator on \(FaO(X, r) \), \(\lambda \leq Fa\alpha - \psi \ast cl(\lambda) \).

Proposition 3.2 If \(\lambda \in Fa\alpha - \psi \ast I(X, r) \) in ftss \((X, r) \) and \(\psi \ast \) be a fuzzy operator on \(FaO(X, r) \), then \(Fa\alpha - \psi \ast cl(\lambda) \in Fa\alpha - \psi \ast I(X, r) \).

Proof. Assume that \(\lambda \in I^X \) and \(Fa\alpha - \psi \ast cl(\lambda) \leq \mu_1 \vee \mu_2 \) where \(\mu_1, \mu_2 \in Fa\alpha - \psi \ast C(X, r) \). Since \(\lambda \leq Fa\alpha - \psi \ast cl(\lambda) \) and \(\lambda \in Fa\alpha - \psi \ast I(X, r) \), \(\lambda \leq \mu_1 \) or \(\lambda \leq \mu_2 \). Then \(Fa\alpha - \psi \ast cl(\lambda) \leq \mu_1 \) or \(Fa\alpha - \psi \ast cl(\lambda) \leq \mu_2 \).

Therefore \(Fa\alpha - \psi \ast cl(\lambda) \in Fa\alpha - \psi \ast I(X, r) \).

Proposition 3.3 If \(\lambda \in Fa\alpha - \psi \ast MI(X, r) \), then \(\lambda \in Fa\alpha - \psi \ast C(X, r) \).

Proof. Let \(\lambda \in Fa\alpha - \psi \ast MI(X, r) \). Then, there is no \(\mu \in Fa\alpha - \psi \ast I(X, r) \) such that \(\mu > \lambda \). By Proposition 3.2, \(Fa\alpha - \psi \ast cl(\lambda) \in Fa\alpha - \psi \ast I(X, r) \).

For any \(\lambda \in I^X \) and \(\psi \ast \) be a fuzzy operator on \(FaO(X, r) \) in ftss \((X, r) \). If \(\lambda \in I^X \) be a fuzzy \(\alpha - \psi \ast \)-irreducible closed set. Any fuzzy set \(\mu \in I^X \) with \(\mu \leq \lambda \), is said to be a fuzzy \(\alpha - \psi \ast \)-generic set of \(\lambda \) if \(Fa\alpha - \psi \ast cl(\mu) = \lambda \).

IV. FUZZY \(\alpha - \psi \ast \)-QUASI-SOBER SPACE

Definition 4.1 Let \(\psi \ast \) be a fuzzy operator on \(FaO(X, r) \) in ftss \((X, r) \). Let \(\lambda \in I^X \) be a fuzzy \(\alpha - \psi \ast \)-irreducible closed set. Any fuzzy set \(\mu \in I^X \) with \(\mu \leq \lambda \), is said to be a fuzzy \(\alpha - \psi \ast \)-generic set of \(\lambda \) if \(Fa\alpha - \psi \ast cl(\mu) = \lambda \).
Definition 4.2 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \tau) \) in a fts \((X, \tau)\). Then \((X, \tau)\) is said to be a fuzzy \(\alpha - \psi^*\) quasi-Sober, if for every fuzzy \(\alpha - \psi^*\) irreducible closed set there exists a fuzzy \(\alpha - \psi^*\) generic set.

Remark 4.1 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \tau) \) in a fts \((X, \tau)\). Let \(Y \subset X \) and \((Y, \tau_Y)\) be a fuzzy subspace of \((X, \tau)\). Then \(\psi \) is a fuzzy operator on \(\text{FaoO}(Y, \tau_Y) \).

Definition 4.3 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \tau) \) in a fts \((X, \tau)\). If \(\lambda, \mu \in I^X \) with \(\lambda \mu \) there exists a \(\delta \in \text{FaoO} - \psi^* C(X, \tau) \) such that either \(\mu \leq \delta \), \(\lambda \delta \) or \(\lambda \leq \delta \), \(\mu \delta \) then \((X, \tau)\) is called fuzzy \(\alpha - \psi^*\) Kolmogorov.

Proposition 4.1 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \tau) \) in a fts \((X, \tau)\). Let \(Y \subset X \) and \((Y, \tau_Y)\) be a fuzzy subspace of \((X, \tau)\). If \((X, \tau)\) is fuzzy \(\alpha - \psi^*\) Kolmogorov, then \((Y, \tau_Y)\) is fuzzy \(\alpha - \psi^*\) Kolmogorov.

Proof. Let \(\lambda, \mu \in I^X \) with \(\lambda \mu \). Then there exists a \(\delta \in \text{FaoO} - \psi^* C(X, \tau) \) such that \(\mu \leq \delta \), \(\lambda \delta \) or \(\lambda \leq \delta \), \(\mu \delta \). Let \(\lambda^I \), \(\mu^I \) \(\in I^Y \) with \(\lambda^I \), \(\mu^I \). Since \(\delta \in \text{FaoO} - \psi^* C(X, \tau) \), \(\delta^I \), \(\mu^I \in \text{FaoO} - \psi^* C(Y, \tau_Y) \). Also, since \(\lambda^I \leq \lambda \), \(\lambda \leq \delta \), \(\mu^I \leq \mu, \mu \leq \delta \), \(\lambda^I \leq \delta^I \), \(\mu^I \leq \delta^I \) with \(\mu^I \), \(\delta^I \). Hence \((Y, \tau_Y)\) is fuzzy \(\alpha - \psi^*\) Kolmogorov.

Notation 4.1 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \sigma) \) and \(\text{FaoO}(Y, \sigma) \) where \((X, \tau)\) and \((Y, \sigma)\) are any two fss. For any \(\lambda, \mu \in I^X \), \(\delta \in I^X \), \(\text{FaoO} - \psi^* \) with respect to \((X, \tau)\) and \((Y, \sigma)\) are denoted by \(\text{FaoO} - \psi^* \) and \(\text{FaoO} - \psi^* \) respectively. Then the collection of all fuzzy \(\alpha - \psi^*\) irreducible closed in \((X, \tau)\) id denoted by \(\text{FaoO} - \psi^* IC(X, \tau) \).

Proposition 4.2 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \tau) \) in a fts \((X, \tau)\). Let \(Y \subset X \) and \((Y, \tau_Y)\) be a fuzzy \(\alpha - \psi^*\) closed subspace of \((X, \tau)\). If \((X, \tau)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober, then \((Y, \tau_Y)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober.

Proof. Let \(\lambda \in \text{FaoO} - \psi^* IC(Y, \tau_Y) \). Then \(\lambda \in \text{FaoO} - \psi^* IC(X, \tau) \). Since \((X, \tau)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober, there exists a fuzzy \(\alpha - \psi^*\) generic set \(\mu \in I^X \) such that \(\text{FaoO} - \psi^* IC(\mu) \). Thus \(\text{FaoO} - \psi^* IC(\mu) \). This implies that \(\text{FaoO} - \psi^* IC(\mu) \). Therefore \(\text{FaoO} - \psi^* IC(\mu) \). Hence \((Y, \tau_Y)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober.

Proposition 4.3 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X_1, \tau_1) \) and \(\text{FaoO}(X_2, \tau_2) \) where \((X_1, \tau_1)\) and \((X_2, \tau_2)\) are any two fss. Let \(f: (X_1, \tau_1) \rightarrow (X_2, \tau_2) \) be a injective and fuzzy \(\alpha - \psi^*\) continuous function. If \(\lambda \in \text{FaoO} - \psi^* IC(X_1, \tau_1) \), then \(\text{FaoO} - \psi^* IC(f(\lambda)) \in \text{FaoO} - \psi^* IC(X_2, \tau_2) \).

Proof. Let \(\lambda \in \text{FaoO} - \psi^* IC(X_1, \tau_1) \). Let \(\mu_1, \mu_2 \in \text{FaoO} - \psi^* C(X_2, \tau_2) \). Since \(\text{FaoO} - \psi^* cl(\lambda) \leq \mu_1 \land \mu_2 \). Since \(f(\lambda) \leq \text{FaoO} - \psi^* cl(f(\lambda)) \), \(f(\lambda) \leq \mu_1 \land \mu_2 \). As \(f \) is injective, \(\lambda \leq \text{FaoO} - \psi^* cl(f(\lambda)) \). Then \(\lambda \leq \text{FaoO} - \psi^* cl(f(\lambda)) \). Since \(f \) is a fuzzy \(\alpha - \psi^*\) continuous function, \(\text{FaoO} - \psi^* cl(f(\lambda)) \leq \mu_1 \land \mu_2 \). Hence \(\text{FaoO} - \psi^* cl(f(\lambda)) \in \text{FaoO} - \psi^* IC(X_2, \tau_2) \).

Proposition 4.4 Let \(\psi \) be a fuzzy operator on \(\text{FaoO}(X, \tau) \) in a fts \((X, \tau)\). Let \(Y \subset X \) and \((Y, \tau_Y)\) be a fuzzy \(\alpha - \psi^*\) open subspace of \((X, \tau)\). If \((X, \tau)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober, then \((Y, \tau_Y)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober.

Proof. Let \(\mu \in \text{FaoO} - \psi^* IC(Y, \tau_Y) \). Then \(\mu \in \text{FaoO} - \psi^* IC(X, \tau) \). Since \((X, \tau)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober, there exists a fuzzy \(\alpha - \psi^*\) generic set \(\lambda \in I^X \) such that \(\text{FaoO} - \psi^* cl(\lambda) = \mu \). Then \(\text{FaoO} - \psi^* cl(\lambda) = \mu \). Since \(\mu \in \text{FaoO} - \psi^* IC(Y, \tau_Y) \), \(\text{FaoO} - \psi^* cl(\lambda) = \mu \) and \(\lambda \leq \mu \). Hence \((Y, \tau_Y)\) is fuzzy \(\alpha - \psi^*\) quasi-Sober.

V. CONCLUSION

In this paper, we explored \(\psi^* \) operator on a family of fuzzy \(\alpha\) open sets in a fuzzy topological spaces. We can extend \(\psi^* \) operator on fuzzy homotopy and fuzzy spectral spaces.

REFERENCES

AUTHORS PROFILE

M. Rowthri M.Sc.,M.Phil., is a research scholar in Mathematics in Sri Sarada College for Women(Autonomous), Salem, Tamilnadu, India. She has published three articles in national and international journals. She is doing research in fuzzy \(\alpha - \psi \) operator on fuzzy topological spaces.

Dr. B. Amudhambigai, M.Sc., MPhil, Ph.D is working as an Assistant Professor in Mathematics at Sri Sarada College for Women(Autonomous), Salem, Tamilnadu, India. She has published several articles in many reputed journals and guiding M.Phil and Ph.D students. Her research area includes fuzzy Cryptography and Mathematical Modelling.