
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-1, May 2020

1622

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A2516059120/2020©BEIESP

DOI:10.35940/ijrte.A2516.059120



Abstract: In today’s era of internet, communication plays a

vital role in every aspect of daily activity, as the number of internet

users increases an enormous volume of data is generated. This

motivates to develop and use a messaging system that collects and

analyzes large volume of generated data. Kafka is a distributed

messaging system based on publish-subscribe model with high

throughput and fault-tolerant mechanism. Around 40% of

fortune 500 companies use Kafka messaging system for

processing data. Kafka is used to stream real-time data and it is

also used to process the data received from IOT sensors. This

paper discusses about the procedure for developing and deploying

the Kafka messaging system into the working environment based

on container technology. The secure communication is enabled by

configuring the Kafka with two security mechanisms. The

performance of the developed system is evaluated considering

QoS parameters for different test scenarios using Prometheus

tool.

Keywords: Communication, data, Internet of Things, Kafka,

QoS parameter

I. INTRODUCTION

Owing to the rapid growth of distributed computing, the

implementation and growth of distributed systems has

become ever more profound in recent years. For instance,

high volumes of messages are produced continuously in some

sizeable distributed systems. To process these messages

effectively, developers need to find an efficient way to rapidly

capture and distribute terabytes of messages. This

requirement demands a kind of robust business model. In the

article [1] the challenges faced by the remote server in data

accumulation were identified and a Netty framework was

used to adopt Kafka as an intermediate layer to achieve

asynchronous communication. The test were conducted by

using a single message size which is not the practical case.

The system working performance were evaluated by running

the producers and consumers separately [2]. The overall load

experienced by Kafka system was monitored using Zookeeper

service to ensure the continuous service availability [3]. The

potential advantage of the Containerization technology over

the previously existing VM technology is discussed in paper

[4][5]. Considering the advantages of the Containerization

methods [6], Kafka deployment is made using the Docker and

Revised Manuscript Received on May 21, 2020.

* Correspondence Author

Tejas V*, department of Electronics and Communication Engineering,

R V College of Engineering. Bengaluru, India.

Email:tejasteju122@gmail.com

Dr. Kiran V, department of Electronics and Communication

Engineering, R V College of Engineering. Bengaluru, India., Email:

Kiranv@rvce.edu.in

Containarization mechanism [7]. The schematic view of the

Kafka model is shown in Fig 1.

Fig 1: Schematic view of Kafka [1]

The model is based on implications that producers initially

produce messages, and the produced messages are consumed

later by the consumers. Kafka serves as a link between

producers and consumers so that they can interact well with

each other.

II. THEORY AND METHODOLOGY

A. Kafka Architecture

Kafka is a distributed publish-subscribe messaging system

and a powerful queue that can accommodate a large amount

of data and allows users to transfer messages from one

endpoint to another. Kafka is suitable for consumption of both

offline and web communications. The architectural view of

Kafka is show in Fig 2. Kafka is built by making use of

Zookeeper’s synchronization service. Kafka messages remain

on the disk and are repeated within the cluster to avoid loss of

data.

Fig 2: Architectural view of Kafka [2]

Development of Kafka Messaging System and its

Performance Test Framework using Prometheus

Tejas V, Kiran V

Development of Kafka Messaging System and its Performance Evaluation using Prometheus

1623

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2516059120/2020©BEIESP

DOI:10.35940/ijrte.A2516.059120

The different terminologies associated with Kafka are:

1. Kafka Broker: In order to achieve load balance Kafka

cluster consists of number of Kafka brokers. Due to stateless

feature of Kafka brokers, Zookeeper services are used to

preserve their cluster state.

2. Zookeeper: Kafka makes use of zookeeper service to

manage the cluster. Zookeeper is used within the cluster to

organize and handle Kafka brokers. Whenever a new broker

is added into the Kafka cluster or when the available broker

goes into failure state the zookeeper notifies the producers

and consumers about the same.

3. Topic: A topic is the name of the category/feed name into

which the messages are entered during publishing event and

read from during the subscribing event. All the messages

within the Kafka are organized into topics. There is further

flexibility in topic creation by specifying the number of

partitions within a single topic.

4. Producers: The messages are published into the Kafka

topics by the producers. The messages can be produced to one

or more topics simultaneously. The data is sent into the Kafka

brokers. Producers can also write into a particular partition

within a topic by specifying the partition offset value within a

topic

5. Consumers: Consumers are the subscriber of the messages

from the Kafka topics. Consumers read the published

messages from the Kafka brokers by subscribing into the

relevant topic.

6. Connectors: Connectors are used in stream processing

application. It serves as an intermediate link for relaying

stream of data from Producers and delivering the stream of

data to Consumers.

B. Methodology Adopted

The development of the Kafka messaging system is based on

Docker and Containerization technology. Before the

emergence of containerization technology, Virtual machine

(VM) had been the technology of choice for server resource

optimization. Since each VM includes an Operating System

and a virtual copy of all the hardware needed by the OS, VMs

need substantial amount of RAM and CPU resources and

increases software development life cycle. Containarization

technology is preferred to overcome the drawbacks of Virtual

Machine technology. A Docker container image is a

lightweight, standalone, executable software package that

consists everything required to run an application including

code, runtime, machine tools. During runtime container

images created become containers. Containers are available

for both Linux and Windows based applications. The Kafka

messaging system is installed on the kubernetes [7] cluster via

helm charts. Helm manages Kubernetes resource packages

through Charts. A chart is a accumulation of files organized in

a specific directory structure to create a Kubernetes

application. The two security mechanism are implemented to

safeguard the confidential information exchanged through the

Kafka cluster. After the development and deployment phase

the Kafka system is monitored and its performance is

evaluated for QoS parameters by integrating Kafka with

Prometheus/grafana monitoring tool. The Kafka is monitored

at regular intervals for resource optimization to ensure

continuous service availability.

C. Experimental Details

The diagram, shown in the Fig. 3, depicts the experimental

design of the research carried out in this paper work and

represent the Kafka system operation process.

Fig. 3: Schematic representation of Kafka system

operation

In order to deploy the Kafka system on the Kubernetes cluster

through containerization method a Docker [8] file is created

from which the docker image is extracted. The running

instance of the docker image becomes containers which are

deployed on the cluster. Helm is used to manage Kubernetes

resource through charts. The chart is a collection of file

organized in a source-tree structure to create a Kafka

application on the kubernetes cluster. Once the Kafka is

deployed on the kubernetes cluster the Kafka system is

integrated with the Prometheus/Grafana monitoring tool as

shown in Fig 4.

Fig 4: Integration of Kafka with Prometheus monitoring

tool

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-1, May 2020

1624

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A2516059120/2020©BEIESP

DOI:10.35940/ijrte.A2516.059120

The messages produced into the Kafka brokers can be from

particular database, logs collected

from a particular website or the data received from the

sensors. The data stored in Kafka can be subscribed at any

instant of time. The performance is evaluated for Kafka by

considering QoS parameters such as throughput, latency,

error rate using the monitoring tool. The Fig 5 describes the

work flow of JMX (Java Management Extensions) with

Kafka. To collect the MBeans (Managed Beans) value the

JMX port has to be set. A query is made with the name

MBeans to obtain the metrics value that acts as a performance

indicator for Kafka.

Fig 5: JMX port connection method [2]

The query associated with Metric is summarized in Table1.

Table I: JMX Queries

Metrics name Query

Bytes in per sec

kafka.server:type=BrokerTopicMetri

cs,name=BytesInPerSec

Bytes out per sec

kafka.server:type=BrokerTopicMetri

cs,name=BytesOutPerSec

Total time (ms)

kafka.network:type=RequestMetrics,

name=TotalTimeMs,request={Produc

e|FetchConsumer}

CPU usage

rate(cpu_seconds_total(mode="idle",i

nstance))

Error rate

rate(kafka_network_requestmetricsco

unt(name="Error per second"))

III. RESULTS AND DISCUSSSION

Once the cluster is created and the cluster is in running state,

the Kafka system is deployed on the running cluster using

helm command. The release name and namespace must be

specified during the Kafka deployment to uniquely identify

the instance within the cluster. Once the installation of the

Kafka system is made on the cluster. The deployment status of

the Kafka is verified using Helm list command. The

performance of the messaging system is assessed by altering

the number of records produced and consumed from the

Kafka system. Various QoS parameters are considered for the

performance indication. The results were observed for four

different test scenario. The result of one of the test scenario

for processing 10000 messages is shown in the Fig [6]-[12]

Fig 6: CPU usage graph 10000 messages processed

Fig 7: Memory usage graph for 10000 messages processed

.

Fig 8: Bytes in per second for 10000 messages processed

Development of Kafka Messaging System and its Performance Evaluation using Prometheus

1625

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A2516059120/2020©BEIESP

DOI:10.35940/ijrte.A2516.059120

Fig 9: Bytes out per second for 10000 messages processed

Fig 10: Error per second for 10000 messages processed

Fig 11: Total processing time for 10000 messages

processed

Fig 12: Disk usage graph for 10000 messages processed

The entire metrics evaluation for all the four test cases is

summarized in the Table II

Table II: Performance results for different test cases

Metrics Case1 Case2 Case3 Case4

Topic

name

Rvce

Bangalore

Karnataka

India

Number of

Messages

100

1000

5000

10000

CPU

usage(m

core)

0.065

0.075

0.11

0.12

Memory

usage(MB

)

0.008

0.05

0.09

0.1

Disk

available

(Gigabytes

)

55

54.5

54.3

54.2

Bytes In

per sec

5

50

250

500

Bytes Out

per sec

6

50

270

510

Total

Time(ms)

0.004

0.0045

0.015

0.04

Error per

sec

0

0

0.2

0.2

From the results tabulated in Table II it can be concluded that

the developed messaging system is a high throughput, fault

tolerant system with negligible latency by observing the bytes

in/sec, bytes out/sec , total

processing time metrics .

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-1, May 2020

1626

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A2516059120/2020©BEIESP

DOI:10.35940/ijrte.A2516.059120

The other metrics such as CPU usage, Memory usage, Disk

usage must be monitored continuously to optimize the

resources based on demand to ensure continuous service

availability.

IV. CONCLUSION AND FUTURESCOPE

This project was intended to develop a high throughput, low

latency, fault tolerant messaging system and evaluate the

performance of the messaging system considering different

QoS parameters. This type of messaging model offers

advantage over the traditional messaging model in terms of

operational throughput and reduced latency. The deployment

of the Kafka is based on containarization technology which

further ensures resource optimization and portability across

different operating platforms and clouds. In order to ensure

secure communication two security mechanisms such as

SASL and SSL mechanisms are implemented. From the

obtained results it can be concluded that the developed Kafka

system has high throughput and negligible delay while

processing huge volumes of messages. However during the

research process it was found that the development of Kafka

requires lot of manual work. As future work in order to ease

the development work and reduce human errors during

development more practical tools can be involved and

integrated into Kafka. The further in depth analysis of Kafka

could be made by considering other QoS parameters such as

purgatory size, input output wait ratio etc.

ACKNOWLEDGMENT

The writers would like to thank Mr. Ramesh K

Sridharamurthy, Technical Manager, NOKIA Networks and

solutions for his support and assistance during the entire work

process.

REFERENCES

1. Z. Yuan, B. Pang, Y. Du, X. Liu, J. Yao and C. Kong, Design and

Implementation of Internet of Things Message Subscription System

Based on Kafka, IEEE 11th International Conference on

Communication Software and Networks (ICCSN), Chongqing, China,

2019, pp. 603-606.

2. H. Wu, Z. Shang and K. Wolter, Performance Prediction for the Apache

Kafka Messaging System, IEEE 21st International Conference on High

Performance Computing and Communications, Zhangjiajie, China,

2019, pp. 154-161

3. M. Song, G. Luo and E. Haihong, A Service Discovery System based

onZookeeper with Priority Load Balance Strategy, IEEE International

Conference on Network Infrastructure and Digital Content (IC-NIDC),

Beijing, 2016, pp. 117-119.

4. S. Singh and N. Singh, Containers & Docker: Emerging roles & future of

Cloud technology, 2nd International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT),

Bangalore, 2016, pp. 804-807

5. V. Medel, O. Rana, J. Á. Bañares and U. Arronategui, Modelling

Performance & Resource Management in Kubernetes, IEEE/ACM 9th

International Conference on Utility and Cloud Computing (UCC),

Shanghai, 2016, pp. 257-262

6. G. Kambourakis, A. Rouskas and S. Gritzalis, Using SSL/TLS in

authentication and key agreement procedures of future mobile networks,

4th International Workshop on Mobile and Wireless Communications

Network, Stockholm, Sweden, 2002, pp. 152-156.

7. P. Le Noac'h, A. Costan and L. Bougé, A performance evaluation of

Apache Kafka in support of big data streaming applications, IEEE

International Conference on Big Data (Big Data), Boston, MA, 2017,

pp. 4803-4806

8. Preeth E N, F. J. P. Mulerickal, B. Paul and Y. Sastri, Evaluation of

Docker containers based on hardware utilization, International

Conference on Control Communication & Computing India (ICCC),

Trivandrum, 2015, pp. 697-700.

AUTHORS PROFILE

Tejas V, is currently pursuing his post-graduation

degree in Communication systems from the Department

of Electronics and Communication Engineering, R V

college of Engineering, Bengaluru, India. He obtained

his Bachelor of Engineering degree from department of

Electronics and Communication Engineering, BNM

institute of Technology, Bengaluru in 2017. He has

previously published a paper on smart electronics driver assistance aid at

IEEE conference. His area of interest include Communication systems,

Image processing, Computer Networks

Dr. Kiran V, is working as an Associate professor,

Department of Electronics and Communication

Engineering, R V college of Engineering, Bengaluru,

India. He completed his Master of technology degree on

Digital Electronics and Communication later completed

his PhD on Communication and signal processing in the

year 2019 from Visveswaraya Technological University, Belagavi, India. He

has a teaching experience of 14 years in various subjects such as Analog

communication, Information theory and decoding, Data communication. He

has presented 13 International conference papers, 6 National papers and his

work has been published in 7 journals.

