Anti fuzzy Bi-ideal of a Near Algebra

B. Jyothi, P. Narasimha Swamy, Rakshita Deshmukh

Abstract. In this paper we introduce the notion of anti fuzzy bi-ideals of a near algebra and obtain some of the important properties related to the notion. We also study product of anti fuzzy bi-ideals in a near algebra and explore certain characterizations.

Keywords: Anti fuzzy set, bi-ideal, homomorphic image of a Near-algebra.

I. INTRODUCTION

Near-algebra is a near ring which admits a field as a right operator domain. Brown [2], Irish [4], Srinivas and Narasimha Swamy [13] have studied certain properties of a near-algebra.

Zadeh[15] has introduced the notion of fuzzy set. The fuzzy set theory developed by researchers has found many applications in the domain of mathematical sciences. The study of fuzzy algebraic structures started with the introduction of fuzzy subgroups (fuzzy groupoid) and fuzzy (left, right) ideals in the pioneering paper of Rosenfeld[12]. Biswas[1] introduced the notion of anti fuzzy subgroups. In near rings the notion of anti fuzzy ideals has initiated by Kim, Jun and Yoon[5]. Kuroki[6] introduced and studied fuzzy(left, right) ideals and fuzzy bi-ideals in semigroups. Manikantan[8] has developed the notion of fuzzy bi-ideals in near ring. Later some basic concepts of fuzzy algebra such as fuzzy ideals and fuzzy bi-ideals in a semigroup, using a new approach of fuzzy spaces and fuzzy groups was introduced by Dib[3] in 1994. In this paper, we consider an anti-fuzzification to the concept bi-ideal in near-algebra. Further established homomorphic image and pre image to Y forms a semi-group under multiplication. Throughout this paper we refer to right near-algebra as near-algebra.

II. PRELIMINARIES

Definition 2.1[4]: A (RIGHT) near algebra Y over a field X is a linear space Y over X on which multiplication is defined such that
i. Multiplication is right distributive over addition
\[i.e\ (x + y)z = xz + yz \text{ for every } x, y, z \in Y. \]
ii. \(a(xy) = (ax)y \text{ for every } x, y \in Y \text{ and } a \in X. \]

Definition 2.2[13]: A near algebra Y is said to be a zero symmetric near algebra or near c-algebra if \(n.0 = 0 \text{ for every } n \in Y \text{ where } 0 \text{ is the additive identity in } Y. \)

Definition 2.3[13]: Let Y, Y' be two near algebras over a field X. A mapping \(f : Y \rightarrow Y' \) is called a near algebra homomorphism if
i. \(f(x + y) = f(x) + f(y) \text{ for every } x, y \in Y. \)
ii. \(f(xy) = f(x)f(y) \text{ for every } x, y \in Y. \)
iii. \(f(ax) = a(f(x)) \text{ for every } x \in Y, a \in X. \)

Definition 2.4[15]: Let X be a nonempty set. A fuzzy subset \(\lambda \) of X is a function \(\lambda : X \rightarrow [0,1] \).

Definition 2.5: Let F be a fuzzy subset of X. Then F is called an anti fuzzy field of X if for \(l, m \in X. \)
\[i. F(l + m) \leq max(F(l), F(m)) = F(l) \wedge F(m) \]
\[ii. F(-l) \leq F(l) \]
\[iii. F(lm) \leq max(F(l), F(m)) = F(l) \vee F(m) \]
\[iv. F(l^{-1}) \leq F(l) \text{ for all } l \neq 0 \in X. \]

Definition 2.6: A fuzzy subset \(\mu \) of Y is said to be an anti fuzzy near algebra over an anti fuzzy field F of X if,
\[i. \mu(l + m) \leq max(\mu(l), \mu(m)) = \mu(l) \vee \mu(m), \]
\[ii. \mu(al) \leq max(F(a), \mu(l)) = F(a) \vee \mu(l), \]
\[iii. \mu(lm) \leq max(\mu(l), \mu(m)) = \mu(l) \vee \mu(m), \]
\[iv. F(1) \leq \mu(l) \text{ for all } l, m \in Y \text{ and } a \in X. \]

Definition 2.7: Let (F, X) be an anti fuzzy field and \(\lambda \) be an anti fuzzy subset of a linear space Y over the field X. Then \(\lambda \) is said to be an anti fuzzy subspace of Y if
\[i. \lambda(x + y) \leq max(\lambda(x), \lambda(y)). \]
\[ii. \lambda(ax) \leq max(F(a)\lambda(x)). \]

Definition 2.8: Let \(\mu \) be an anti fuzzy sub set of near algebra Y over an anti fuzzy field (F, X). Then \(\mu \) is called an anti fuzzy ideal of Y, if
\[i. \mu(lm) \leq \mu(l) \]
\[ii. \mu(ml + e) - ml \leq \mu(e) \text{ for every } l, m, e \in Y. \]
Then \(\mu \) is an anti fuzzy right ideal of Y if (i) is satisfied. And \(\mu \) is an anti fuzzy left ideal of Y if (ii) is satisfied.

Definition 2.9: Let f be a mapping from set A to B. Let \(\mu \) and \(\nu \) be anti fuzzy subsets of A and B respectively. Then f(\(\mu \)), the image of \(\mu \) under f, is an anti fuzzy subset of B defined by
\[f(\mu)(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset \\ 1 & \text{otherwise} \end{cases} \]
And the pre-image of \(\nu \) under f is an anti fuzzy subset of A defined by(\(f^{-1}(\nu)(x) = \nu(f(x)) \text{ for all } x \in A. \)
Definition 2.10[14]: Suppose μ and η be two anti fuzzy subsets of Y. Then μ ∩ η, μ ∪ η, anti -product μ * η, and anti * product μ * η, are anti fuzzy subsets of Y defined as,

i. (μ ∩ η)(l) = min {μ(l), η(l)}
ii. (μ ∪ η)(l) = max {μ(l), η(l)}
iii. (μ * η)(l) = \begin{align*}
&\inf_{m,n} \max \{μ(m), \eta(n)\} & \text{if } l = m+n \\
&1 & \text{otherwise}
\end{align*}
iv. (μ * η)(l) = \begin{align*}
&\inf_{l = a+b+c \rightarrow \infty} \max \{μ(a), η(c)\} & \text{if } l = a+b+c \\
&1 & \text{otherwise}
\end{align*}

Definition 2.11: An anti fuzzy subgroup Λ of a near ring N is said to be an anti fuzzy bi-ideal, if

(λa∩λb) ∈ Λ and (λa∪λb) ∈ Λ.

Definition 2.12: The anti-characteristic function of Y is denoted by Y : Y → [0,1] mapping every element of Y to 0. Throughout this paper Y will denote zero symmetric near-algebra over a fuzzy field (F, X).

III. ANTI FUZZY BI-IDEALS OF A NEAR ALGEBRA

Definition 3.1: An anti fuzzy subset λ of a near algebra Y over an anti fuzzy field (F, X) is an anti fuzzy bi-ideal, if λ(l + m) ≤ max{λ(l), λ(m)}, λ(al) ≤ max{F(a), λ(l)} and (λa∩λb) ∈ Λ and (λa∪λb) ∈ Λ.

Example 3.2: Let X = Z₂ & F is an anti fuzzy field of X defined by

F(m) = \{0.1 \text{ if } m = 0 \}
0.3 \text{ if } m = 1

Let Y = {0, p, q, r} be a set with two binary operations “*” and “.” as

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>p</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>0</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>q</td>
<td>q</td>
<td>q</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0</td>
</tr>
</tbody>
</table>

And scalar multiplication on Y is defined as 0.l = 0, 1.l = l for every l ∈ Y, where 0, 1 ∈ X. Clearly Y is a near algebra over a field X. Let μ be a fuzzy sub set of Y defined as μ(0) = 0.5, μ(p) = 0.7, μ(q) = μ(r) = 0. Very easily one can verify that μ is an anti fuzzy bi-ideal of Y. At the same time μ is not a fuzzy bi-ideal of Y since μ(0) = μ(p) ≥ min {μ(p), μ(p)}

Theorem 3.3: Union of family of anti fuzzy bi-ideals of a near algebra Y over a fuzzy field (F, X) is an anti fuzzy bi-ideal.

Proof: Assume that λ is an anti fuzzy left ideal of Y. Let l, m, n, a, b, c, p, q ∈ Y such that l = pq = (km)n = a(b + i) - ab. Then we have

(λa∩λb) ∈ Λ and (λa∪λb) ∈ Λ.

Since λa∩λb ∈ Λ and since λ is an anti fuzzy left ideal of Y λ(a(b + i) - ab) ≤ λ(l))

≥ min{sup \{μ(p), μ(q)\}, sup \{μ(q), μ(r)\}, sup \{μ(r), μ(r)\}, sup \{μ(r), μ(r)\}}

Hence λa∩λb ∈ Λ and (λa∪λb) ∈ Λ.

Hence λ is an anti fuzzy bi-ideal of Y.

Theorem 3.4: Every anti fuzzy left ideal of Y is an anti fuzzy bi-ideal of Y.

Proof: Assume that λ is an anti fuzzy left ideal of Y. Let l, m, n, a, b, c, p, q ∈ Y such that l = pq = (km)n = a(b + i) - ab. Then we have

(λa∩λb) ∈ Λ and (λa∪λb) ∈ Λ.

Since λa∩λb ∈ Λ and since λ is an anti fuzzy left ideal of Y λ(a(b + i) - ab) ≤ λ(l))

≥ min{sup \{μ(p), μ(q)\}, sup \{μ(q), μ(r)\}, sup \{μ(r), μ(r)\}, sup \{μ(r), μ(r)\}}

Hence λa∩λb ∈ Λ and (λa∪λb) ∈ Λ.

Hence λ is an anti fuzzy bi-ideal of Y.

Theorem 3.5: Every anti fuzzy left ideal of Y is an anti fuzzy bi-ideal of Y.

Proof: Assume that λ is an anti fuzzy right ideal of Y. Let l, m, n, a, b, c, p, q ∈ Y such that l = pq = (km)n = a(b + i) - ab. Then we have

(λa∩λb) ∈ Λ and (λa∪λb) ∈ Λ.

Since λa∩λb ∈ Λ and since λ is an anti fuzzy right ideal of Y λ(a(b + i) - ab) ≤ λ(l))

≥ min{sup \{μ(p), μ(q)\}, sup \{μ(q), μ(r)\}, sup \{μ(r), μ(r)\}, sup \{μ(r), μ(r)\}}

Hence λa∩λb ∈ Λ and (λa∪λb) ∈ Λ.

Hence λ is an anti fuzzy bi-ideal of Y.
Thus \((\lambda_0,\lambda) \cup (\lambda_0,\lambda) \supseteq \lambda \).

Hence \(\lambda \) is an anti fuzzy bi-ideal of \(Y \).

Theorem 3.7: Let \(\lambda \) be an anti fuzzy bi-ideal of a zero symmetric near algebra \(Y \). Then \(\lambda(lmn) \leq \max(\lambda(l), \lambda(m)) \) for all \(l, m, n \in Y \).

Proof: Assume that \(\lambda \) is an anti fuzzy bi-ideal of a zero symmetric near algebra \(Y \). Then we have \(\lambda_0(\lambda) \subseteq \lambda_0(\lambda(lmn)) \).

\[
\lambda(lmn) \leq \lambda_0(\lambda(lmn)) = \lambda_0(\lambda(l)) \cup \lambda_0(\lambda(m)) \leq \max(\lambda(l), \lambda(m)) \leq \lambda(l) \cup \lambda(m).
\]

Theorem 3.8: If \(\lambda \) is an anti fuzzy bi-ideal of near algebra \(Y \) if and only if \(\lambda^c \) is a fuzzy bi-ideal of \(Y \).

Proof: Let \(Y \) is a near algebra and \(\lambda \) be an anti fuzzy bi-ideal of \(Y \). For \(l, m, n \in Y \), we have

\[
\lambda^c(l + m) \leq \lambda^c(l) + \lambda^c(m) \leq \max(\lambda(l), \lambda(m)).
\]

Therefore \(\lambda^c(l + m) \geq \max(\lambda^c(l), \lambda^c(m)) \).

Hence \(\lambda^c \) is a fuzzy bi-ideal of \(Y \). Conversely suppose that \(\lambda^c \) is a fuzzy bi-ideal.

For \(l, m, n \in Y \), we have

\[
\lambda(l + m) = \max(\lambda(l), \lambda(m)) \leq \lambda(l) \cup \lambda(m).
\]

Therefore \(\lambda(lmn) \leq \max(\lambda(l), \lambda(m)) \).

Theorem 3.9: If \(f: Y \to Y \) be a near algebra homomorphism. If \(\lambda \) is an anti fuzzy bi-ideal of \(Y \) then \(f(\lambda) \) is an anti fuzzy bi-ideal of \(Y \).

Proof: Given \(\lambda \) is an anti fuzzy bi-ideal of \(Y \). Then

\[
(\lambda_0,\lambda) \cup (\lambda_0,\lambda) \supseteq \lambda.
\]

Therefore \((\lambda_0,\lambda) \cup (\lambda_0,\lambda) \supseteq \lambda \).

Hence \(\lambda \) is an anti fuzzy bi-ideal of \(Y \).
Anti fuzzy Bi-ideal of a Near Algebra

AUTHORS PROFILE

B. Jyothi, completed M.Sc. (Mathematics) from Osmania University in 1996. She is currently pursuing Ph. D in Mathematics GITAM University, Visakhapatnam, Andhra Pradesh, India. Her area of research is Algebra (Near Algebra). Published 6 research papers in national and international refereed journals. She has 17 years of teaching experience. She is a member of APTSMS.

Dr. P. Narasimha Swamy, completed M.Sc (Mathematics) from Osmania University in 2002 and Ph. D. from Kakatiya University in 2012. Doing research in the field of Algebra(near-rings). Published 26 research papers in national and international refereed journals. He has 18 years of teaching experience and 13 years of research experience. He is a member of APTSMS and organized one international conference.

Rakshita Deshmukh completed BSc (MSCs) from Osmania University in the year 2000 and MSC (Mathematics) from Osmania University in the year 2005. She is currently pursuing Ph.D. in Mathematics from GITAM University, Visakhapatnam, Andhra Pradesh, India. Her area of research is Algebra. She has 13 years of teaching experience in UG and PG level. She is a member of APTSMS.