Design and Sustainability of an Earthquake Resistant G+3 Residential Building

U.V. Narayana Rao, G. Yaswanth Kumar, K Srinivasa Rao

Abstract: In structural building it is fundamental that the vision belief system of the designer in his plan stage meets in its execution. Its additionally essential to guarantee that so as to meet this necessity the measurement, materials and so on... don’t surpass according to the need, along these lines increasing the cost and request to be a finished designer. Tall structure, modern and business building which have a perplexing geometry are hard to examine and plan physically. In this manner it is very to utilize STAAD.PRO programming for the examination and structure. The standard goal of this venture is to investigation and plan of a multistoried G+3 building utilizing staad.pro, the structure has an all out developed zone of sq meter. Plan of the structure is created utilizing auto CAD. The plan includes load counts physically and examining the entire structure by STAAD.pro. The structure strategies utilized in STAAD-PRO investigation are limit state configuration fitting in with Indian standard code of training for configuration shafts, segments, and footings. The structure of part is completed utilizing sp16 configuration helps for strengthened cement and IS 456-2000 plain and fortified solid code of training. Nitty gritty basic drawing of the shafts, sections and balance are set up after all checks. The whole structure is an encircled structure with segments and pillars assembled solidly, framing a system. The investigation of the confined structure is done utilizing STAAD.pro. The casing comprises of pillars and segments. A model is created of the encircled structure and loads are applied on the individuals. The loads are received according to IS 875-1987 Design of burdens for structures and structures.

Keywords : High rise building, industrial and commercial building complex geometry, STAD PRO software, load calculations, design of beams, columns, and footings, IS 456-2000 plain and reinforced concrete code of practice etc

I. INTRODUCTION

The main aim of this paper involves analysis and design of multistoried G+3 Building using a very popular designing software staad.pro. We have chosen STAAD.Pro because of its following advantages: STAAD.PRO highlights a best in class UI, perception instruments, ground-breaking examination and structure motors with cutting edge limited component and structure to representation and result check, staad.pro is the experts decision for steel, solid, timber, aluminum and cold framed steel plan of low and tall structures, ducts, petrochemical plants, burrows, scaffolds, heaps and significantly more. The STAAD.PRO Graphical UI: It is utilized to produce the model, which would then be able to be investigated utilizing the STAAD.engine After examination and configuration is finished, the GUI can likewise be utilized to see the outcomes graphically.

The STAAD ANALYSIS AND DESIGN ENGINE: It is a universally useful figuring motor for basic examination and incorporated steel, solid, timber, and aluminum structure.

To start with we have tackled some example issues utilizing staad.pro and checked the precision of the outcomes with manual figurings. The outcomes were to fulfillment and were exact. Basic examination contains the arrangement of physical laws and numerical required to contemplate and predicts the conduct of structures. Basic examination can be seen all the more uniquely as a technique to drive the building configuration process or demonstrate the adequacy of a structure without a reliance on straightforwardly testing it. To play out an exact investigation a basic specialist must decide such data as basic burdens, geometry, bolster conditions and material properties. The aftereffects of such an examination ordinarily incorporate help responses, stresses and removals. This data is then contrasted with criteria that show the states of disappointment. Progressed auxiliary examination may analyze dynamic reaction, dependability, and non straight conduct.

The point of the plan is the accomplishment of a worthy likelihood that structures being planned will perform sufficiently during their expected life. With a fitting level of wellbeing, they ought to continue all the heaps and misshapenings of ordinary development and use and have satisfactory toughness and satisfactory protection from the impacts of seismic. Structure and basic components will regularly be planned by limit state technique. Record ought to be taken of acknowledged hypotheses test and experience and the need to structure for toughness.

The structure of the structure is reliant upon the base prerequisite as recommended in the Indian standard codes. The base necessities relating to the basic security of structures are being secured by method for setting down least plan loads which must be expected for dead loads, forced burdens, and other outer burdens, the structure would be required to hold up under. Severe adjustment to stacking principles prescribed right now it is trusted, won’t just guarantee the auxiliary security of the structures which are being planned.
Policy and Sustainability of an Earthquake Resistant G+3 Residential Building

Architectural Plans:

Design and Sustainability of an Earthquake Resistant G+3 Residential Building

Architectural Plans:

Fig 1 Column positioning

Loads Considered:
Dead Loads:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
according to standard IS code of training

1.4 Loadings:
The loadings were determined mostly physically and rest was produced utilizing STAAD.Pro load generator. The stacking cases are categorized as:

Self weight
The self weight of the structure can be generated by STAAD.Pro itself.

Dead load from the slab

Live load

Seismic load

Load combinations

Dead Load:

![Fig 3 Fixing supports of the structure](image)

Seismic load

![Fig 6 Seismic load](image)

2.0 Design of G+3 RCC Framed Building Using STAAD.PRO:

2.1 Design of Slab:
In the current venture two kinds of chunks are structured in particular rooftop piece . rooftop chunk is a nonstop section on the highest point of the structure which is otherwise called porch. By and large porch has less live burden and it is vacant in more often than not aside from in certain events. Consequently all the rooftop pieces are planned as two path section for the simple game plan of the support and simplicity of the work.

2.2 Design of Beam:
A fortified solid shaft ought to have the option to oppose tractable compressive and shear stresses initiated in it by the heaps on the beam. Concrete is genuinely solid in pressure yet frail in strain. Plain solid pillars are in this manner constrained in conveying limit by the low rigidity .steel is solid in strain. Along these lines the shortcoming of cement is overwhelmed by the arrangement of strengthening steel in the pressure zone around the solid to make a fortified solid shaft. The shaft is broke down first so as to figure the interior activities, for example, bowing minute and shear power. The profundity of the shaft is taken by L/10 – L/6.

2.3 Design of Column:
A segment as a rule might be characterized as a part conveying direct pivotal burden which causes compressive worries of such greatness that these anxieties to a great extent control its structure. The heaps and minutes in segments in an edge are unique. Every one of the segment is required to be structured independently. Anyway when whole structure is to be planned , there will be various different segments alongside every one of the above segments to shape a gathering. All the sections are exposed to pivotal burdens and uniaxial twisting minute. Thusly in the current plan all sections are fit as a fiddle

2.4 Design of Foundation:
Establishment configuration includes a dirt report to build up the most suitable kind of establishment and a basic plan to decide balance measurements and required measure of support.
Since compressive quality of the dirt is commonly a lot more vulnerable than that of the solid, the contact territory between the dirt and the balance is a lot bigger than that of the sections and dividers. Contingent upon the bearing limit of the dirt, planning of structure will be finished.

2.5 Design of Staircase:

Stairs comprise of steps organized in an arrangement for motivation behind offering access to various floors of a structure. The area of stairs requires great and cautious thought. In the current plan hound legged staircase is planned.

STAAD PRO Input Command File:

Staad Space
Start Job Information
End Job Information

Input Width 79
Unit Meter KN
Joint Coordinates

1 0 0 0; 2.3 5.8 0 0; 3 0 0 4.33; 4 6.25 0 0; 5 9.57 0 0; 6 3.58 0 4.33;
7 6.25 0 4.33; 8 9.57 0 4.33; 9 3.58 0 5.78; 10 5.34 0 5.78; 11 3.58 0 7.61;
12 5.34 0 7.61; 13 0 0 7.61; 15 0 0 9.84; 16 3.58 0 9.84; 17 5.96 0 9.84;
18 9.57 0 9.84; 19 0 0 12.73; 20 3.58 0 12.73; 21 5.96 0 12.73;
22 9.57 0 12.73; 23 0 0 15.17; 24 3.58 0 15.17; 25 5.96 0 15.17;
26 9.57 0 15.17; 27 0 0 3.58 0; 28 3.58 0 3.58; 29 0 3 4.33; 30 6.25 3 0;
31 39.57 3 0; 32 3.58 3 4.33; 33 6.25 3 4.33; 34 9.57 3 4.33; 35 3.58 3 5.78;
36 5.34 3 5.78; 37 3.58 3 7.61; 38 5.34 3 7.61; 39 0 3 7.61; 40 1 0 3.94; 42
3.58 3 9.84; 43 5.96 3 9.84; 44 9.57 3 9.84; 45 0 3 12.73; 46 3.58 3 12.73;
47 5.96 3 12.73; 48 9.57 3 12.73; 49 0 3 15.17; 50 3.58 3 15.17; 51 5.96 3 15.17;
52 9.57 3 15.17; 53 0 6; 54 3.58 6 0; 55 0 6 4.33; 56 6.25 6 0;
57 9.57 6 0; 58 3.58 6 4.33; 59 6.25 6 4.33; 60 9.57 6 4.33; 61 3.58 6 5.78;
62 5.34 6 5.78; 63 3.58 6 7.61; 64 5.34 6 7.61; 65 0 6 7.61; 67 0 6 9.84; 68
3.58 6 9.84; 69 5.96 6 9.84; 70 9.57 6 9.84; 71 0 6 12.73; 72 3.58 6 12.73;
73 5.96 6 12.73; 74 9.57 6 12.73; 75 0 6 15.17; 76 3.58 6 15.17; 77 5.96 6 15.17;
78 9.57 6 15.17; 79 0 9; 80 3.58 9 0; 81 0 9 4.33; 82 6.25 9 0;
83 9.57 9 0; 84 3.58 9 4.33; 85 6.25 9 4.33; 86 9.57 9 4.33; 87 3.58 9 5.78;
88 5.34 9 5.78; 89 3.58 9 7.61; 90 5.34 9 7.61; 91 0 9 7.61; 93 0 9 9.84; 94
3.58 9 9.84; 95 5.96 9 9.84; 96 9.57 9 9.84; 97 0 9 12.73; 98 3.58 9 12.73;
99 5.96 9 12.73; 100 9.57 9 12.73; 101 0 9 15.17; 102 3.58 9 15.17; 103 5.96 9 15.17;
104 9.57 9 15.17; 105 0 12 0; 106 3.58 12 0; 107 0 12 4.33;
108 6.25 12 0; 109 9.57 12 0; 110 3.58 12 4.33; 111 6.25 12 4.33; 112 9.57 12 4.33;
Design and Sustainability of an Earthquake Resistant G+3 Residential Building

135 To 138 140 To 144 148 151 To 153 193 To 196 199 To 202 204 To 208 212 -
213 215 To 217 277 292 To 294 297 312 319 320 337 338
394 395 398 399 402 -
403 406 407 Uni 10
38 81 83 90 92 To 94 96 98 99 145 154 156 To 158 160
162 163 209 211 218 -
220 To 222 224 226 227 295 296 298 To 300 313 To 318 321
To 325 333 To 336 -
339 To 343 351 352 391 392 Uni 5
257 259 265 266 268 To 272 301 To 307 326 To 332 344 To
350 362 To 368 -
383 Uni 3.1
11 31 75 95 139 159 203 223 267 287 Uni 15
Load 1 Loadtype Seismic Title Eq+X
1893 Load X 1
Load 2 Loadtype Seismic Title Eq-X
1893 Load X -1
Load 3 Loadtype Seismic Title Eq+Z
1893 Load Z 1
Load 4 Loadtype Seismic Title Eq-Z
1893 Load Z -1

III. DESIGN RESULTS AND ANALYSIS

Beam Results :

BEAM DESIGN RESULTS
M20 Fe500 (Main) Fe415 (Sec.)
LENGTH: 3320.0 mm SIZE: 300.0 mm X 230.0 mm
COVER: 25.0 mm Staad Space - Page No. 274
Summary Of Reinf. Area (Sq.Mm) Section 0.0 mm 830.0
mm 1660.0 mm 2490.0 mm 3230.0 mm TOP
766.15 176.71 101.49 251.80 902.02
Reinf. (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm)
(Sq. mm) Bottom 362.87 259.17 163.01 259.68
514.76 Reinf. (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm)
(Sq. mm) Summary Of Provided Reinf. Area
Section 0.0 mm 830.0 mm 1660.0 mm 2490.0 mm 3320.0 mm
Top 7-12f 3-12f 3-12f 3-12f 8-12f
Reinf. 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s) 2 layer(s)
Bottom 5-10f 4-10f 3-10f 4-10f 7-10f
REINF. 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s)
Shear 2 legged 8f 2 legged 8f 2 legged 8f 2 legged 8f
2legged 8f
Reinf. @ 100 mm c/c @ 100 mm c/c @ 100 mm c/c @ 100
mm c/c @ 100 mm c/c
Shear Design Results at Distance D (Effective Depth) From
Face of the Support
Shear Design Results at 345.0 mm away from Start Support
VY = 51.20 MX = 0.06 LD = 15 Provide 2 Legged 8f
@ 100 mm c/ hear Design Results At 345.0 Mm Away From
End Support
VY = -54.95 MX = -0.08 LD= 14
Provide 2 Legged 8f @ 100 mm c/c

Design of Two Way Rectangular Slab:
Design Steps:

Hence, the slab is to be designed as a two way slab.

1. Thickness of Slab:
Assume effective depth (d) = Span/28 = 3350/28 =
119.64mm Adopt effective depth (d) = 120mm
Overall depth (D) = 145mm.

2. Effective Span:
L= 3.35+(0.23/2)+(0.115/2)=3.52
Ly= 4.21+(0.23/2)+(0.115/2)= 4.38

3. Loads:
Self weight of slab = 0.145x25=3.625 KN/m²
Live load = 2 KN/m²
Floor Finish = 1 KN/m²
Total Load = 6.625 KN/m²
Factored Load (Wu) = 1.5x6.625=9.9375 KN/m²

4. Design Moments and Shear Forces:
This slab corresponds case 4. Of Table-26 of IS-456 as Two
adjacent edges are continuous.

\[
\alpha (-ve) = 0.060 + \frac{(0.065 - 0.045) \times (1.24 - 1.2)}{(1.2 - 1.2)}
\]

\[
\alpha (+ve) = 0.045 + \frac{(0.045 - 0.049) \times (1.24 - 1.2)}{(1.2 - 1.2)}
\]

\[
\gamma (-ve) = 0.047
\]

\[
\gamma (+ve) = 0.035
\]

Mu (-ve) = 0.138 \times 9.94 \times (3.52)² = 7.63 KN-m
Mu (+ve) = 0.046 \times 9.94 \times (3.52)² = 5.75 KN-m
Muy (-ve) = 0.047 \times 9.94 \times (3.52)² = 5.78 KN-m
Muy (+ve) = 0.035 \times 9.94 \times (3.52)² = 4.30 KN-m

Vu = \frac{W_{u,k}}{2} = \frac{9.9375 \times 2}{2} = 17.49 KN

5. Minimum Depth Required:
The minimum depth required to resist bending moment
Mu = 0.138 fck bd²
7.63x10⁶ = 0.138 x 20 x 1000 x d²
\[
d = 52.57mm < 120mm
\]
Hence provided depth is adequate

6. Reinforcement:
Along Short span(-ve) @ support
Mu = 0.87 fy Ast d = \frac{1-\frac{1}{d}}{4509}k
7.36x10⁶ = 0.87x415xAst x 120 \left(\frac{1-\frac{1}{d}}{4509}\right)
Ast = 181.82 mm²

Using 16mm diameter bars,Spacing of bars (S)
S = \frac{d}{Ast} x 1000 = \frac{181.82}{16} x 1000 = 431.96mm
Maimum Spacing is
3d = 3x120= 360mm
300mm which ever is less
Hence,Provide 16mm diameter bars at 300 mm c/c
Along shorter span(+ve) @ mid span
Mu = 0.87 fy Ast d = \frac{1-\frac{1}{d}}{4509}k
5.75x10⁶ = 0.87x415xAst x 120 \left(\frac{1-\frac{1}{d}}{4509}\right)
Ast = 135.90 mm²
Minimum Reinforcement = Ast,min = 0.12 % of Gross Area
= (0.12/100) x 145 = 174 mm²
Adopt Ast = 174 mm2
Using 8mm diameter bars, Spacing of bars (S)
\[S = \frac{2\pi d^2}{4\times\pi} = \frac{3.14\times8^2}{4\times\pi} = 374 \times 1000 = 451.37 \text{ mm} \]
Minimum Spacing is
3d = 3\times120 = 360 mm
300 mm which ever is less
Hence, provide 10mm diameter bars at 300 mm c/e
Along y – direction (+ve BM)
AS the moment is same (+5.75 KN-m) 8mm diameter bars at 280 mm c/e
AS the +ve BM is still less, provide minimum reinforcement as calculated above, i.e., 16mm diameter bars at 280 mm c/e

7. Reinforcement in Edge Strip:
\[\text{Ast} = 0.12 \% \text{ of Gross Area} \]
\[= \frac{(0.12/100)\times145}{1} = 174 \text{ mm}^2 \]
Using 8mm diameter bars, Spacing of bars (S)
\[S = \frac{2\pi d^2}{4\times\pi} = \frac{3.14\times8^2}{4\times\pi} = 374 \times 1000 = 451.37 \text{ mm} \]
Minimum Spacing is
5d = 5\times120 = 600 mm
450 mm which ever is less
Hence, provide 10mm diameter bars at 450 mm c/e in edge strips in both directions

8. Torsion Reinforcement:
At the corner, where both both edges are discontinuous, area of reinforcement in each layer
\[A_t = \frac{3}{4} \times 174 = 130.5 \text{ mm}^2 \]
Distance over which torsion reinforcement is to be provided = 1/5th Short span
\[= \frac{1}{5}\times1\times5 = 570 \text{ mm} \]
Using 6 mm bars, Spacing
\[S = \frac{2\pi d^2}{4\times\pi} = \frac{3.14\times6^2}{4\times\pi} = 52.5 \times 1000 = 385.47 \text{ mm} \]
Hence, provide 8mm diameter bars at 300 mm c/e in four Layers at corner A Where both edges are Discontinuous. At the corner where one edge is discontinuous and one edge is continuous, Area of Reinforcement in each layer
\[A_t = \frac{1}{2}\times3/4 \times 174 = 62.5 \text{ mm}^2 \]
Hence, provide 8mm diameter bars at 300 mm c/e at corners Where one edge is discontinuous and one edge is continuous. At the corner, where both edges are continuous, torsion reinforcement is not required.

9. Check for Deflection:
For Simply continuous Slabs Basic value of l/d ratio is 20
Modification factor for tension steel F_m
\[\% \text{ of steel} = 0.12 \]
\[F_s = 0.58 \times f_y = 0.58 \times 415 = 240 \text{ N/mm}^2 \]
From Fig. 4 of IS 456, Modification factor = 1.6
Maximum permitted l/d ratio = 1.6\times26 = 41.6
l/d provided = 3520/120 = 29.33 < 41.6
Hence deflection control is safe.

Design of Cantilever Slab

Design Steps:
1. Thickness of Slab:
Assume effective depth (d) = Span/10 = 920/10 = 92 mm
Adopt effective depth (d) = 120 mm
Overall depth (D) = 145 mm.
The depth D may be gradually reduced to 90mm at the free end.

2. Loads:
Self weight of slab = (0.145+0.1)/2\times25=3.0625 \text{ KN/m}^2
Live load = 2 KN/m2
Floor Finish = 1 KN/m2
Total Load = 6.0625 KN/m2
Factored Load (Wu) = 1.5\times6.0625=9.09375 \text{ KN/m}^2

3. Design Moments and Shear Forces:
\[\text{Mu} = \frac{Wu\times l}{2} = \frac{9.094\times0.92}{2} = 3.85 \text{ KN-m} \]
\[V_u = \frac{Wu\times l}{2} = 9.094\times0.92 = 8.37 \text{ KN} \]

4. Minimum Depth Required:
The minimum depth required to resist bending moment
\[\text{Mu} = 0.138 \times \text{fck} \text{ bd} \]
\[3.85\times10^6 = 0.138 \times 20 \times 1000 \times d^2 \]
d = 37.34 mm < 120 mm
Hence provided depth is adequate.

5. Reinforcement:
\[\text{Mu} = 0.87 \times f_y \text{ Ast} \]
\[3.85\times10^6 = 0.87 \times 415 \times \text{Ast} \times 1.2 \]
\[\text{Ast} = 90.26 \text{ mm}^2 \]
Minimum Reinforcement = Ast, min = 0.12 % of Gross Area
\[= \frac{(0.12/100)\times145}{1} = 174 \text{ mm}^2 \]
Adopt Ast = 174 mm2
Using 8mm diameter bars, Spacing of bars (S)
\[S = \frac{2\pi d^2}{4\times\pi} = \frac{3.14\times8^2}{4\times\pi} = 374 \times 1000 = 288.88 \text{ mm} \]
Minimum Spacing is
3d = 3\times120 = 360 mm
300 mm which ever is less
Hence, provide 8mm diameter bars at 280 mm c/e

6. Distribution Reinforcement:
Minimum Reinforcement = Ast, min = 0.12 % of Gross Area
\[= \frac{(0.12/100)\times145}{1} = 174 \text{ mm}^2 \]
Adopt Ast = 174 mm2
Using 8mm diameter bars, Spacing of bars (S)
\[S = \frac{2\pi d^2}{4\times\pi} = \frac{3.14\times8^2}{4\times\pi} = 374 \times 1000 = 288.88 \text{ mm} \]
Minimum Spacing is
5d = 5\times120 = 600 mm
450 mm which ever is less
Hence, provide 8mm diameter bars at 280 mm c/e
in transverse directions.

7. Anchorage Length at Support:
The anchorage length required at the support is given by
\[l_d = \left(0.87 \times f_y \times \phi \times 4 \times t_w \right) = \left(0.87 \times 415 \times 8 \times 4 \times 1.2 \times 1.6 \right) \]
\[= 376 mm \]

8. Check for Deflection:
For Simply continuous Slabs Basic value of l/d ratio is 7
Modification factor for tension steel F_m
\[\% \text{ of steel} = 0.12 \]
\[F_s = 0.58 \times f_y = 0.58 \times 415 = 240 \text{ N/mm}^2 \]
From Fig. 4 of IS 456, Modification factor = 1.6
Maximum permitted l/d ratio = 1.6\times20 = 11.2
l/d provided = 920/120 = 7.67 < 11.2
Hence deflection control is safe.
Staircase Design:

Proportioning of Staircase:

- Dimensions of Stair: 2m x 5m
- Height of floor: 3m
- Height of one flight: \(\frac{3}{2} = 1.5 \) m
- Rise, \(R = 150 \) mm
- Tread, \(T = 270 \) mm
- No of Rises: \(\frac{1500}{150} = 10 \) No's
- Hence, No of treads: \(9 \) No's
- Adopted width of stair: 1.2m

Length of Going:

For 9 treads, the length required = width of tread x no of treads = 0.27 x 0.9 = 0.243 m
- Width of landing: \((5 - 2.43)/2 = 1.285 \) m

Effective Length of Flight:

- Effective Length = Beam/2 + Going + Beam/2 = 0.23/2 + 2.43 + 0.23/2 = 2.66 m

Effective Length of Landing Slab:

- Effective Length = Beam/2 + Width of Landing = 0.23/2 + 1.285 = 1.4 m

Depth of Waist Slab:

Assume Overall Depth of waist slab is 150 mm
- Effective Depth = \(D - \omega/2 = 150 - 20 - 12/2 = 124 \) mm

Calculation of Loads:

- Live Load = 2 KN/m²
- Floor finish = 0.6 KN/m²

Weight of the waist Slab = \(D\sqrt{1 + \left(\frac{R}{T}\right)^2} \times 25 = 4.29 \) KN/m²

Weight of steps = \(\frac{1.87}{T} \times 25 = R \times 25 \)

Total Load = 8.765 KN/m²
- Factored Load (Wu) = 13.14 KN/m²

Factored Bending Moment:

- \(Mu = \frac{1-fy\text{Ast} \left(\frac{1-405 \times \text{Ast}}{20 \times 1000 \times 150} \right)}{fcck} \)
- \(44.92 \times 10^6 = 0.87 \times 415 \times \text{Ast} \times 120 \)
- Ast = 889.75 mm²

Minimum Reinforcement = Ast, min = 0.12 % of Gross Area = \((0.12/100) \times 150 \times 1000 = 180 \) mm² (Astreq > Astmin)

Using 12 mm diameter bars, Spacing of bars (S)
- \(S = \frac{22}{\text{Ast}} \times 1000 = 4.12\times 1000 = 127.11 \) mm

Minimum Spacing is: 1.3 \(d \times 3 \times 125 = 375 \) mm
- 2.000mm which ever is less
- Hence, Provide 12 mm diameter bars at 120 mm c/c

Distribution Reinforcement:

- Minimum Reinforcement = Ast, min = 0.12 % of Gross Area = \((0.12/100) \times 150 \times 1000 = 180 \) mm²
- Adopt Ast = 180 mm²
- Using 8mm diameter bars, Spacing of bars (S)
- \(S = \frac{22}{\text{Ast}} \times 1000 = 4.12\times 1000 = 279.25 \) mm

Minimum Spacing: 1.5 \(d \times 5 \times 125 = 625 \) mm, 2. 450mm which ever is less
- Hence, Provide 8mm diameter bars at 250 mm c/c

IV. CONCLUSIONS

STAAD PRO has the ability to figure the fortification required for any solid area. The program contains various parameters which are planned according to IS 456. Bars are intended for flexure, shear and torsion.

Design for flexure:

Most extreme hanging and hoarding moments are determined for all dynamic burden cases at every one of the previously mentioned segments. Every one of these segments are intended to oppose both of these basic hanging and hoarding minutes. Any place the rectangular segment is insufficient as separately strengthened segment, doubly fortified segment is attempted.

Design for shear:

Shear support is determined to oppose both shear and torsional minutes. Shear limit computation at various segments without the shear fortification depends on the genuine ductile support gave to deal with the equalization shear powers following up on these segments.

Beam design output:

The default configuration yield of the bar contains flexural and shear support gave along the length of the pillar.

Retrieval Number: F9546038620/2020/BEIESP
DOI: 10.35940/ijrte.F9546.038620
Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
Column design:
Segments are intended for hub powers and biaxial minutes at the finishes. All dynamic burden cases are tried to compute fortification. The stacking which yield most extreme support is known as the basic burden. Segment configuration is accomplished for square segment. Square segments are structured with fortification conveyed on each side similarly for the areas under uni-pivotal minute. Every single significant measure for choosing longitudinal and transverse fortification as stipulated by IS 456 have been dealt with in the segment structure of staad.

REFERENCES
7. H. M. Khater "Impact of Calcium on Geopolymerization of Aluminosilicate Wastes", Journal of American Society for Civil Engineers (ASCE), 2012.

AUTHORS PROFILE

U. V. Narayana Rao is currently working as an Assistant Professor in the Civil Engineering Department in V R Siddhartha Engineering College with M.Tech Degree and published 9 papers into reputed International Journals.

K Srinivasa Rao is currently working as an Assistant Professor in the Mechanical Engineering Department in V R Siddhartha Engineering College with M.Tech Degree and published 15 papers into reputed International Journals.

G. Yaswanth Kumar is currently working as an Assistant Professor in the Civil Engineering Department in V R Siddhartha Engineering College with M.Tech Degree and published 8 papers into reputed International Journals.