
International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-8 Issue-6, March 2020 

3339  

 

Retrieval Number: F8616038620/2020©BEIESP 
DOI:10.35940/ijrte.F8616.038620 
Journal Website: www.ijrte.org 
 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Abstract: Deoxyribonucleic acid (DNA) is an essential 
macromolecule for all known varieties of life and its damage is a 
life-threatening structure. The DNA double-strand breaks (DSBs) 
are considered as one of the most rigorous kinds of DNA damage 
and an error in its repairing mechanism stimulates cancer and 
also causes lethality in cells with various genetic disorders. 

In this article, we have exhibited a numerical solution of an 
ordinary differential equation based biological model to overcome 
the error for estimating the average number of DSBs per cell time. 
This model is called DNA repair Model (DRM) and to solve this 
model a Modified Adomian decomposition method with new 
polynomials (MADMNP) is applied. The convergence of the 
aforesaid method is established and the order of error is also 
dissertated. To solve DRM, this method provides an improved 
scheme to estimate the average number of DSBs per cell time in 
comparison to Adomain decomposition method (ADM) and 
Laplace ADM with Pad`e approximation (LADM-Pad`e). In this 
respect, a comparison table and a two-dimensional comparison 
graph are provided by considering a numerical example.  

Keywords: Deoxyribonucleic acid, Double-strands breaks, 
Adomian decomposition method, New class of Adomian 
polynomials, Riccati differential equation.  

I. INTRODUCTION 

Genome integrity of an organism has the most important 

role in his successful healthy life and several immunological, 
developmental as well other health issues are also associated 

with it. Therefore, disintegration of genome has various lethal 
effects on the organism. One known major factor to 
disintegrate the genome is DNA double-strand breaks 
(DSBs). DSBs are a form of dangerous lesions which have the 
both broken strands of DNA duplex structure. It is also 
considered as a leading operator element for life threatening 
cancer [1], [2]. DSBs can be originated by two major ways namely 
exogenous and endogenous. Exogenous sources are ionizing 
radiation (IR) and some chemicals while endogenous sources 
like DNA replication, V (D)J recombination and meiotic 
exchange may arise DSBs [3]. Various DSB repair 
mechanisms are evolved by organisms to prevent their lethal 
effects. Unrepaired DSBs may cause of induced apoptosis, 
cell cycle arrest or mitotic cell death [4] while incorrectly 
repaired DSBs may drive cancer by inversions, deletions or  
translocation [5], [6]. Two extensively studied pathways to 
repair DSBs are homologous recombination (HR) and 
non-homologous end-joining (NHEJ) [7]. NHEJ 
characterized by blocking of 5 end resection and close vicinity 
of heterodimer protein Ku70-Ku80 with DSB ends. 

Fig.1. Schematic representation of the Riccati differential equation-based solution of DNA-repair model. 
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In NHEJ, DSB ends are directly ligated and sometimes errors 
make small deletions, insertions and substitutions at breaks 
while translocations are made by joining of DSBs from 
different parts of genome [8].  
On the other hand, HR is considered as error free and 
commenced during the re-sectioning of DSBs by enzymes like 
helicases and nucleases. It creates 3 single stranded DNA 
overhangs and a complex structure forms with RAD51 
recombines. Consequently, in repair DNA synthesis, a 
template homologous duplex DNA molecule is evaded by this 
complex structure [9]. 
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 The approach of mathematical modeling to handle such 
biological problems is a supplementary venture and various 
associated models of biological descriptions are presented 
time to time, see [10]–[12]. In addition, a few comprehensive 
mathematical models are also designed for DSBs [13]–[15]. 
However, DSBs are remaining a puzzle and the presented 
solutions of aforesaid models need more efficient solutions. 
Therefore, here still a requirement for further advancement and 
more specific mathematical approach to deal with DSBs in an 
impressive manner. For this purpose, we are using the average 
number of DSBs per cell at time t derived as elsewhere [16] ,  
[17], 

 

21
'( ) ( ) ( ),U t R U t U t 


     ( ) , (1)aU a U

  

Where  U t average number of DSBs per cell at time t, δ is 

average number of DSBs induced per unit dose, R is radiation 
dose rate, τ is a repair time constant, and γ is a binary reaction 
rate constant in the sense of mass-action chemical kinetics. 
More apparently, the above mentioned DRM is a form of very 
common nonlinear differential equation of mathematics 
named Riccati differential equation. Whose closed form 
solution is not ingenious always. Therefore one may have to 
stand with the approximate solution of the discussed problem. 
Although there are a number of methods [18], [19] to find the 
approximate solution of such nonlinear problems. However, it 
is not essential that aforementioned methods, effective for the 
approximate solution of eq.(1). Therefore, a “Modified 

Adomian Decomposition  Method with New Class of Adomian 
Polynomials”  (MADMNP) is discussed which is a sublime 
technique to improve numerical solutions disposed by ADM 
and LADM-Pade`. This method have phenomenal accuracy 
and elegantly computed convergent series.  
In this article, we discussed a DNA repair model (DRM), 
eq.(1), using a distinct ADM based approach. The approach is 
new to solve such kind of DRM, the discussed approach is 
significant because the most renowned methods are giving 
huge error in the comparison of MADMNP. As well, DSBs 
are analyzed with the MADM. In section 2, a modified 
Adomian decomposition method is discussed for DRM, given 
by (1). The convergence of this method is analyzed in section 
3. In section 4, local error has been estimated for the presented 
approximated solution. Finally, concluding remarks are placed 
in section 5.

           
 

II.  A MODIFIED ADOMIAN DECOMPOSITION 

METHOD WITH NEW POLYNOMIALS (MADMNP) 

FOR DRM 

21
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Operator form of eq.(2) can be written as 
1
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t t t
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Basic assumption of ADM takes place with the consideration 
that the solution  U t and nonlinear term    2  U t N U  

can be decomposed in an infinite series form 
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Now, using eq.(4) and eq.(5) in eq.(3), recursive scheme can 
be defined as 
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Here aU  is germinated from the given initial condition, and 
s

iA are defined as Adomina polynomials with a special class 

[20], such that 
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It is clear from the origination of Adomian polynomials that 
there is no unique definition for the Adomian polynomials as 

the Adomian series 
0 ii

A


 is generalized by Taylor’s series 

[21]. (Statement 1) 
Here we define ( )k t as the thk term approximation of the 

solution such that, 
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where    lim kk
t U t


 . 

III. CONVERGENCE OF DRM SOLVED BY 

MADMNP 

This section explores theoretically the convergence of two 

series 
0 ii

u


 and 
0 ii

A


 for DRM. The section also 

exhibits an analysis of the error up the order of precision.  

A. Convergence of Adomian’s series of new polynomials 

The convergence of a nonlinear dynamical system basically 
depends upon the assumption that a nonlinear operator must 
be contractive. Due to this consideration, a unique solution of 
the problem takes place, which is not possible in all the 
practical cases. Therefore a different approach [22] has been 
discussed for the convergence of DRM.  
 

Theorem 1. If eq.(4) supposed to be absolutely convergent 
also the nonlinear operator ( )N U is expressible in a series 

form eq.(5)with infinity radius of convergence, i.e., 
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Then the series 
0

i
i

U

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  is the solution of eq.(1).  

Proof. Since the series defined in eq. (7) converges for any U 
(Using the hypothesis of  radius of convergence). Also the 
series defined in eq.(4) is absolutely convergent with absolute 
convergence .A    Therefore using eq.(7), we have 
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Therefore in order to rearrange ( )N U we can write iU as  
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right hand side of eq.(9) can be proved through article, [23]. 
Now, eq.(8) can be written as 
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which is convergent by the hypothesis of eq.(7). Now using 
rearrangement theorem [24], absolutely convergent series 

defined by   ,N U  can be rearranged with the series 
0

.ii
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  

Therefore, in the contrast of the convergence of the series 
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Statement 1 (Discussed above), we substitute
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Which is the relationship given in eq.(6), and the scheme 
discussed in eq.(6) is the solution of eq.(1).  

B. Error Estimation 

Error estimation of any numerical scheme depends on the 
number of solution components. In this section, we shall 
discuss, what will be the effect on error locally over a 
particular interval of time with the increase of series terms.  
Let E is the maximum error, defined for the truncated series 
is, 
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Now, using eq.(5), we have 
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It can be manifest that up to 
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Taylor’s series expansion of  N U about point 0U gives the 
thk Adomian polynomial .kA Therefore, there will be an 

error of order 1
0( )kU U  in the calculation of .kA  Hence in 

eq.(11) the order of error of kU  will be equal to the order of 

error in 1,KA   

Hereby, order of local error can be defined as, 
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IV. APPLICATION 

In this section, we demonstrate a numerical example based on 
the discussed theory. 
Example 1. Consider the DSBs per cell at time t  

2'( ) 150 5 , (0) 50, 0 0.05.U t U U U t       

 (13) 
The exact solution of eq.(13) is 

25

25

130 120
( ) .

13 8

t

t

e
U t

e





 

Solution. Now, using iterative scheme eq.(6), approximated 
series solution S4 will be, 
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 For the further study of the proposed MADMNP, a 
comparison is made with ADM and LADM-Pade` in figure 1 
and table 1.  

Table 1:  A comparison table of the absolute error (AE) 
functions with ADM, LADM, and MADMNP 

t Exact 
Solution 

AE 
using 
ADM 

AE using 
LADM-Pad`e 

AE using 
MADMNP 

0 50 0 0 0 
0.01 33.0088 1.45638 0.942944 0.0984 
0.02 24.8883 36.7988 20.6048 1.39011 
0.03 20.2454 235.713 114.286 4.81608 
0.04 17.3159 873.227 367.069 8.87806 
0.05 15.3512 2409.95 879.377 12.2321 
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Fig. 2. A comparison graph between ADM, MADMNP, LADM-Pad`e, and Exact Solution with for k = 0 to 4.  

V. RESULT AND DISCUSSION 

DRM is one of the complicated and important biological 
problems, which has to be solved numerically. To solve this 
we have applied MADMNP. In example 1 a problem is 
considered and the average number of  DSBs per cell time t  
are computed numerically in the interval [0,0.05]  using 

ADM, LADM-Pade, and MADMNP. In table 1, absolute 
error calculations are shown for the solutions obtained by 
ADM, LADM-Pade`, and MADMNP with respect to per cell 
time t from point 0 to 0.05  with time difference 0.01. For 

0.005t  , figure 1 elaborates that the graphs of the obtained 
solution by ADM, LADM-Pade`, and MADMNP are 
identical and coincide with the exact solution. As well, for 

0.01t  , the graphs of the solutions by ADM and 
LADM-Pade` start deviating from the exact solution, 
however, the graph of the solution by MADMNP is in the 
direction of exact solution. We see that the MADMNP 
improves the accuracy of the numerical solution of DRM in 
comparison to ADM and LADM-Pade for the given interval 
and converges to the exact solution.  

VI. CONCLUSION 

A different form of Adomian polynomials is used for 
computation of the components of the scheme given by eq.(6). 
This results as the MADMNP and applied to solve DRM. The 
main advantage of MADMNP is that it obtains a more explicit 
approximated solution in a given interval for DRM with the 
least number of components. The error analysis, comparison 
table, and solution graphs show that MADMNP results in the 
form of more promising results as compared to ADM and 
LADM-Pade`. As well, the convergence analysis of 
MADMNP is also discussed. In addition, the MADMNP can 
be applied in a suitably large interval by increasing the 
number of components.  
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