On Applications of Some Special Functions in Statistics

Indu Bala Bapna, Radhe Shyam Prajapati

Abstract: In this paper we will introduce some probability distributions with help of some special functions like Gamma, k-Gamma functions, Beta, k-Beta functions, Bessel, modified Bessel functions and Laguerre polynomials and in mathematical analysis used Laplace transform. We will also obtain their cumulative density function, expected value, variance, Moment generating function and Characteristic function. Some characteristics and real life applications will be computed in tabulated for these distributions.

Keyword: Gamma function, Probability distribution, moment generating function, Laplace transforms,

I. INTRODUCTION

All special functions and their properties are field of mathematics, physics, statistics and engineering. Many probability distributions of special functions like Exponential, Weibull, Gamma, Beta, log-normal, Beta-normal and Beta Pareto distributions are used for analyze various problems related to human behavior and nature (Mathai et al [1], Rainville [5], Bapna et al [10], and Rehman et al [9], Krishnamoorthy [12] and Walac [4]) . Researchers (Bapna et al [10], Biondi et al [6], Madi et al [13], Subburaj et al [17],Cottne et al [8], Steffensen [11] and Yeates et al [14]) investigate many problems related to environments, queuing theory, climatology, animal behavior, ecology, actuarial science and machines reliability with the help computer software and mathematical modeling by characteristics of probability distributions.

1.1 Probability distribution

A function \(p(x) \) be discrete probability density function for countable values of random variable \(x \) then \(p(x) \) has the following properties (Krishnamoorthy [12], Walac [4])

\[(i) \quad p(x) \geq 0 \]
\[(ii) \quad \sum_{n=0}^{\infty} p(x_i) = 1 \]

(1.1)

A function \(f_s(x) \) be continuous probability density function for uncountable values of random variable \(x \) then \(f_s(x) \) has the properties

\[(i) \quad f_s(x) \geq 0 \]
\[(ii) \quad \int_{-\infty}^{\infty} f_s(x) \, dx = 1 \]

(1.2)

1.2 The k-Gamma and k-Beta functions

The Gamma function \(\Gamma(z) \) is introduced by Euler (1707-1783). It is defined by

\[\Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} \, dx \quad ; \quad \text{Re}(z) > 0 \]

(1.3)

\[\Gamma(z+1) = z \Gamma(z) \]

(1.4)

Many researchers like Euler, Carl Friedrich Gauss, Karl Weierstrass and Egan have extended the research work of Gamma function. They have introduced many applications of Gamma function which are useful in various branches (Mathai et al [1], Rainville [5])

The Beta function \(B(\alpha, \beta) \) is introduced following by Euler and Legendre as

\[B(\alpha, \beta) = \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \, dt \quad ; \quad \text{Re}(\alpha) > 0, \text{Re}(\beta) > 0 \]

(1.5)

The Beta function in term of Gamma function is given by

\[B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} \]

(1.6)

In 2007 R. Diaz and E. Pariguan have (see Daiz et al.[15], Daiz et al.[16]) introduced Pochhammer k-symbol and k-Gamma function that are defined as

\[(\alpha)_n = \frac{\alpha\cdot(\alpha + k)\cdot(\alpha + 2k)\cdot(\alpha + 3k)\cdots(\alpha + (n-1)k)}{1} \]

\[; n \geq 1, k > 0 \]

\[; n = 0 \]

(1.7)

The k-Gamma function is defined as

\[\Gamma_k(z) = \int_{0}^{\infty} x^{z-1} e^{-\frac{x}{k}} \, dx \quad ; \quad \text{For} \quad k > 0, \quad \text{Re}(z) > 0 \]

(1.8)

Equation (9) we can write as

\[\Gamma_k(z) = k^z \Gamma\left(\frac{x}{k}\right) \]

(1.9)

Many authors have investigated some properties of k-Gamma function (see more detail Kokolgorianakk et al [2], Kokolgorianakk [3] and Merovcs [7])

The k-Beta function \(B_k(\alpha, \beta) \) for two variable \(\alpha \) and \(\beta \) is defined by (see more detail Kokolgorianakk et al [2], Kokolgorianakk [3] and Merovcs [7]).
On Applications of Some Special Functions in Statistics

\[B_k(\alpha, \beta) = \frac{1}{k} \int_0^\frac{\alpha}{k} t^{\alpha-1} (1-t)^{\beta-1} \; dt \quad : \quad \text{Re}(\alpha) > 0, \]
\[\text{Re}(\beta) > 0 \]

(1.10)

Equation (1.10) in term (1.8) is given by

\[B_k(\alpha, \beta) = \frac{\Gamma_k(\alpha) \Gamma_k(\beta)}{\Gamma_k(\alpha + \beta)} \quad : \quad \text{Re}(\beta) > 0 \]

(1.11)

II. PROPOSED METHODOLOGY

The special functions have been widely used in science and technology with probability distribution theory for several kinds of problems in reliability analysis. Main results of this paper will be used following methodology

(1)In this paper we will construct new probability distributions with the help of some special functions.
(2)Some important properties these will be described.
(3)In mathematical analysis of main results will be used some special functions and Laplace transforms technique.

III. MAIN RESULTS PROBABILITY DISTRIBUTION WITH GAMMA, K-GAMMA AND K-BETA FUNCTIONS

Theorem 3.1 Let X be a uncountable values of random variable then function

\[f_k(x, k) = \begin{cases} \frac{2}{\Gamma_k(\frac{1}{2})} e^{\frac{x^2}{2}} & : 0 < x < \infty, k > 0 \\ 0 & : \text{otherwise} \end{cases} \]

(3.1)

is follows equation (1.2). Where

\[\Gamma_k(\frac{1}{2}) = k^{\frac{1}{2k-1}} \Gamma(\frac{1}{2k}) \]

(3.2)

Proof. Obviously

\[f_k(x, k) \geq 0 \quad \text{for} \quad 0 < x < \infty, k > 0 \]

Now

\[\int_0^\infty f_k(x, k) dx = \frac{2}{\Gamma_k(\frac{1}{2})} \int_0^\infty e^{\frac{x^2}{2}} dx \]

\[\quad \because \text{put} \quad x^2 = u \]

\[= \frac{2}{\Gamma_k(\frac{1}{2})} \int_0^\infty u^{\frac{1}{2k-1}} e^{-\frac{u}{2}} du = \frac{\Gamma_k(\frac{1}{2})}{\Gamma_k(\frac{1}{2})} = 1 \]

Thus theorem has been proved

3.2 The cumulative density function of theorem 3.1

The cumulative density function of equation (3.1) is given by

\[F_c(z) = \frac{2}{\Gamma_k(\frac{1}{2})} \int_0^z e^{\frac{x^2}{2}} dx = \frac{\Gamma_k(\frac{1}{2}, z^2)}{\Gamma_k(\frac{1}{2})} \]

(3.3)

Equation (3.3) in series expansion as
\[
E(x^r) = \int_0^\infty x^r f_s(x, k) dx = \frac{2}{\Gamma_k\left(\frac{1}{k}\right)} \int_0^\infty x^{r+\frac{1}{k}} e^{\frac{k}{x}} dx = k^{\frac{r}{k}} \Gamma\left(\frac{r+1}{k}\right) \Gamma\left(\frac{1}{k}\right)
\]

(3.8) Equation (3.9) is represent \(r \)th moment about origin of equation (3.1)

Using equation (3.9), the variance of equation (3.1) is given by

\[
\text{Var}(x) = k^2 \left[\Gamma\left(\frac{r+1}{k}\right) \Gamma\left(\frac{1}{k}\right) - \left(\Gamma\left(\frac{1}{k}\right) \right)^2 \right]
\]

(3.10) Note if \(k=1 \) then all results of theorem 3.1 like the standard normal distribution

Theorem 3.4 Let \(X \) be uncountable values of random variable then the function

\[
f_s(x, \gamma, \alpha, \beta, k) = \begin{cases}
\frac{\gamma^{\alpha-1} e^{-\gamma x}}{B_k(\alpha, \beta)} \left(1 - e^{-\gamma x}\right)^{\alpha-1} e^{-\frac{\beta x}{k}} & x > 0 \\
0 & \text{otherwise}
\end{cases}
\]

(3.11) follows

\[
\gamma > 0, \beta > 0, \alpha > 0 \quad \text{and} \quad k > 0
\]

Proof. Obviously

\[
f_s(x, \gamma, \alpha, \beta, k) \geq 0 \quad \forall x > 0, \alpha > 0, \beta > 0, k > 0 \quad \text{and} \quad \gamma > 0
\]

Now

\[
\int_0^\infty f_s(x, \gamma, \alpha, \beta, k) dx = \int_0^\infty \frac{\gamma^{\alpha-1} e^{-\gamma x}}{B_k(\alpha, \beta)} \left(1 - e^{-\gamma x}\right)^{\alpha-1} e^{-\frac{\beta x}{k}} dx
\]

\[
= \frac{1}{B_k(\alpha, \beta)} \int_0^1 (1 - u)^{\alpha-1} u^{\beta-1} du = 1
\]

So that \(f_s(x, \gamma, \alpha, \beta, k) \) follows equation (1.2)

3.5 The Moment Generating Function of Theorem 3.4

The moment generating function of equation (3.11) in term of new parameter \(k>0 \), is given as

\[
M_s(t) = \int_0^\infty e^{tx} f(x, \gamma, \alpha, \beta, k) dx
\]

\[
= \int_0^\infty e^{tx} \frac{\gamma^{\alpha-1} e^{-\gamma x}}{B_k(\alpha, \beta)} \left(1 - e^{-\gamma x}\right)^{\alpha-1} e^{-\frac{\beta x}{k}} dx
\]

\[
= \frac{1}{kB_k(\alpha, \beta)} \int_0^1 u^{\frac{\beta}{k} - 1} (1 - u)^{\alpha-1} du = B_k\left(\beta - \frac{\beta}{k}, \alpha\right) / B_k(\alpha, \beta)
\]

(3.12)

3.6 Probability distribution with Bessel functions

In this section we will discuss probability density function with the help of Bessel functions.

Modified Bessel differential equation of order \(\nu \) is defined as (Mathai et al [1], Rainville [5])

\[
d^2y/dx^2 + x dy/dx = (x^2 - \nu^2)y = 0
\]

(3.13) Equation (3.13) has the solution

\[
Y_\nu(x) = A I_\nu(x) + B K_\nu(x)
\]

; \(A \) and \(B \) being arbitrary constant

Where \(I_\nu(x) \) denotes modified Bessel function of the order \(\nu \) of the first kind and

\[
I_\nu(x) = \sum_{r=0}^\infty \frac{(x/2)^{\nu r}}{r! \Gamma(\nu r + 1)}
\]

(3.14) Equation (3.14) is like growing exponential (Mathai et al [1], Rainville [5])

Where \(K_\nu(x) \) denotes modified Bessel function of order \(\nu \) of the second kind and

\[
K_\nu(x) = \frac{\pi}{2} \frac{I_\nu(x) - I_{-\nu}(x)}{\sin \nu \pi}
\]

\(\nu \neq 0, \pm 1, \pm 2, \pm 3 \ldots \)

(3.15) Equation (3.15) is like decaying exponential (Mathai et al [1], Rainville [5]).

If \(\nu = \frac{1}{2} \) and \(-\frac{1}{2} \) then equations (3.14) and (3.15) will be (Mathai et al [1], Rainville [5])

\[
i_{1/2}(x) = \frac{2}{\pi} \sinh \frac{x}{\sqrt{x}} \quad \text{and} \quad i_{-1/2}(x) = \frac{2}{\pi} \cosh \frac{x}{\sqrt{x}}
\]

(3.16)
Theorem 3.7 Let \(X \) be continuous random variable then the function
\[
f_x(x) = \frac{2\pi}{\log^2(\frac{\pi}{2})} e^{-\lambda x} I_{1/2}(x) I_{-1/2}(x)
\]
\(x > 0, \lambda > 2 \)
(3.18)
follows equation (1.2)

Proof. Clearly
\[
f_x(x) \geq 0; \ x > 0
\]
Now
\[
\int_0^\infty f_x(x) \, dx = \frac{2\pi}{\log^2(\frac{\pi}{2})} \int_0^\infty e^{-\lambda x} I_{1/2}(x) I_{-1/2}(x) \, dx
\]
\[
= \frac{2\pi}{\log^2(\frac{\pi}{2})} \int_0^\infty e^{-\lambda x} \frac{2 \sinh x \cosh x}{\pi x} \, dx
\]
\[
= \frac{1}{\log^2(\frac{\pi}{2})} \int_0^\infty e^{-\lambda x} \left(\frac{e^{2x} - e^{-2x}}{x} \right) \, dx
\]
Solved by the help of Laplace transform technique
\[
= \frac{1}{\log^2(\frac{\pi}{2})} = 1
\]
Hence \(f_x(x) \) has satisfied equation (1.2)

3.8 The moment generating function of theorem 3.7

The moment generating function of equation (3.18) is given as
\[
M_x(t) = \int_0^\infty e^{xt} f_x(x) \, dx
\]
\[
= \frac{2\pi}{\log^2(\frac{\pi}{2})} \int_0^\infty e^{xt} e^{-\lambda x} I_{1/2}(x) I_{-1/2}(x) \, dx
\]
\[
= \frac{2\pi}{\log^2(\frac{\pi}{2})} \int_0^\infty e^{-\lambda t x} \frac{2 \sinh x \cosh x}{\pi x} \, dx
\]
\[
= \frac{1}{\log^2(\frac{\pi}{2})} \int_0^\infty e^{-(\lambda t - 1) x} \left(\frac{e^{2x} - e^{-2x}}{x} \right) \, dx
\]
Solved by the help of Laplace transform
\[
M_x(t) = \frac{\log(1 + \frac{2}{\lambda t})}{\log^2(\frac{\pi}{2})}
\]
(3.19)
Thus equation (3.19) is moment generating function of theorem 3.7

Theorem 3.9 Let \(X \) be uncountable values of random variable then the function
\[
f_x(x) = \frac{e^{-x}}{\log 3} I_{1/2}(x) K_{1/2}(x) ; x > 0
\]
(3.20)
follows equation (1.2)

Proof. Clearly
\[
f_x(x) \geq 0 ; \forall x > 0
\]
Now
\[
\int_0^\infty f_x(x) \, dx
\]
\[
= \frac{1}{\log 3} \int_0^\infty e^{-x} I_{1/2}(x) K_{1/2}(x) \, dx
\]
\[
= \frac{1}{\log 3} \int_0^\infty e^{-x} \frac{e^{x - e^{-2x}}}{x} \, dx
\]
Solved by the help of Laplace transform technique
\[
= \frac{1}{\log 3} = 1
\]
Hence \(f_x(x) \) has satisfied equation (1.2)

3.10 The moment generating function of theorem 3.9

The moment generating function of equation (3.20) is given as
\[
M_x(t) = \int_0^\infty e^{xt} f_x(x) \, dx
\]
\[
= \int_0^\infty e^{xt} \left[\frac{1}{\log 3} I_{1/2}(x) K_{1/2}(x) \right] \, dx
\]
\[
= \frac{1}{\log 3} \int_0^\infty e^{-x} \frac{1 - e^{-2x}}{x} \, dx
\]
Solved by the help of Laplace transform
\[
= \frac{1}{\log \left(1 + \frac{2}{\lambda t}\right)}
\]
(3.21)
Equation (3.21) represents the M.G.F. of theorem 3.9

Above discussed theorems 3.1, 3.4, 3.7 and 3.1 of moment generating functions (M.G.F’s) and characteristic functions in following table-1
Table-1

<table>
<thead>
<tr>
<th>S. N</th>
<th>Probability distribution</th>
<th>$M_x (t)$</th>
<th>$\phi_x (t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_x (k, x) = \frac{2}{\Gamma_k \left(\frac{1}{2} \right)} e^{-\frac{x^2}{2 \Gamma_k}} ; 0 < x < \infty, k > 0$;</td>
<td>$\sum_{r=0}^{\infty} \frac{t^r}{r!} \frac{\Gamma \left(\frac{1}{2} \right)^r}{\Gamma \left(\frac{r+1}{2} \right)}$</td>
<td>$\sum_{r=0}^{\infty} \frac{(it)^r}{r!} \frac{\Gamma \left(\frac{1}{2} \right)^r}{\Gamma \left(\frac{r+1}{2} \right)}$</td>
</tr>
<tr>
<td>2</td>
<td>$f_x (x, \alpha, m, n, k) = \frac{\theta^k \Gamma(k-1)}{B_k(\alpha, \beta)} \left(1 - e^{-\theta x} \right)^{\alpha - 1} e^{-\frac{\theta^2 x^2}{k}}$</td>
<td>$\frac{\Gamma \left(\frac{\alpha + \beta}{k} \right)}{\Gamma \left(\frac{\alpha}{k} - 1 \right) \Gamma \left(\frac{\beta}{k} - \frac{\alpha}{\gamma} \right)}$</td>
<td>$\frac{\Gamma \left(\frac{\alpha + \beta}{k} \right)}{\Gamma \left(\frac{\beta}{k} - \frac{\alpha}{\gamma} \right)}$</td>
</tr>
<tr>
<td>3</td>
<td>$f_x (x) = \frac{2\pi}{\log \left(\frac{3 + x}{2} \right)} e^{-\frac{\theta^2}{2}} I_{1/2}(x) I_{-1/2}(x)$</td>
<td>$\frac{\log \left(\frac{\theta^2 + 2x}{2} \right)}{\log \left(\frac{3 + x}{2} \right)}$</td>
<td>$\frac{\log \left(\frac{\theta^2 + 2x}{2} \right)}{\log \left(\frac{3 + x}{2} \right)}$</td>
</tr>
<tr>
<td>4</td>
<td>$f_x (x) = \frac{e^{-x}}{\log 3} I_{1/2}(x) K_{1/2}(x)$</td>
<td>$\frac{\log \left(1 + \frac{2x}{\gamma} \right)}{\log 3}$</td>
<td>$\frac{\log \left(1 + \frac{2x}{\gamma} \right)}{\log 3}$</td>
</tr>
</tbody>
</table>

3.11 Life Time of Component $F_x (x)$, Survivor function $S_x (x)$, Hazard Rate Function $h(x)$ and Mean residue

Life Function $\kappa(x)$

Let $f_x (x)$ is follows equation (1.2) then the probability of failure till time x is given by (Krishanamoorty [12], Walac [44])

$$F_x (x) = P(X \leq x) = \int_{-\infty}^{x} f_x (x)dx , \text{ for } x > 0$$

(3.22) The probability that the component survivor until time x is denoted $S_x (x)$ and can be introduce as

$$S_x (x) = F(X \geq x) = \int_{x}^{\infty} f_x (x)dx$$

(3.23) Let $f_x (x)$ follows equation (1.2) then hazard rate

$$h(x) = \frac{f_x (x)}{S_x (x)} = \frac{\kappa(x)}{S(x)}$$

$$(3.24) \quad \kappa(x) = \int_{0}^{\infty} f_x (t)dt$$

$$E(X - x|X \geq x) = \frac{\int_{x}^{\infty} (t-x) f_x (t)dt}{S(x)} = \frac{\int_{x}^{\infty} f_x (t)dt}{S(x)} - x$$

(3.25) Above discussed theorems 3.1, 3.4, 3.7 and 3.9 of life time components, survivor functions, hazard rate functions and mean residue life functions are given following in tabulated respectively

Table-2

<table>
<thead>
<tr>
<th>S. N</th>
<th>Probability distribution</th>
<th>$F_x (x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_x (k, x) = \frac{2}{\Gamma_k \left(\frac{1}{2} \right)} e^{-\frac{x^2}{2 \Gamma_k}} ; 0 < x < \infty, k > 0$;</td>
<td>$\frac{2}{\Gamma_k \left(\frac{1}{2} \right)} \int_{0}^{\infty} e^{-\frac{x^2}{2 \Gamma_k}} dx$</td>
</tr>
<tr>
<td>2</td>
<td>$f_x (x, \gamma, \alpha, \beta, k) = \frac{\theta^k \Gamma(k-1)}{B_k(\alpha, \beta)} \left(1 - e^{-\theta x} \right)^{\alpha - 1} e^{-\frac{\theta^2 x^2}{k}}$</td>
<td>$\frac{\gamma}{B_k(\alpha, \beta)} \int_{0}^{\infty} \left(1 - e^{-\theta x} \right)^{\alpha - 1} e^{-\frac{\theta^2 x^2}{k}} dx$</td>
</tr>
<tr>
<td>3</td>
<td>$f_x (x) = \frac{2\pi}{\log \left(\frac{3 + x}{2} \right)} e^{-\frac{\theta^2}{2}} I_{1/2}(x) I_{-1/2}(x)$</td>
<td>$\frac{2\pi}{\log \left(\frac{3 + x}{2} \right)} \int_{0}^{\infty} e^{-\frac{\theta^2}{2}} I_{1/2}(x) I_{-1/2}(x)dx$</td>
</tr>
<tr>
<td>4</td>
<td>$f_x (x) = \frac{e^{-x}}{\log 3} I_{1/2}(x) K_{1/2}(x)$</td>
<td>$\frac{1}{\log 3} \int_{0}^{\infty} e^{-x} I_{1/2}(x) K_{1/2}(x)dx$</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>S. N</th>
<th>Probability distribution</th>
<th>$S_s(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_s(k, x) = \frac{2}{\Gamma_k\left(\frac{1}{2}\right)} e^{x^2/k} : 0 < x < \infty, k > 0$</td>
<td>$\frac{2}{\Gamma_k\left(\frac{1}{2}\right)} \int_0^{\infty} e^{x^2/k} dx$</td>
</tr>
<tr>
<td>2</td>
<td>$f_s(x, \gamma, \alpha, \beta, k) = \frac{\gamma^{k-1}}{B_k(\alpha, \beta)} \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k}$; $x > 0$</td>
<td>$\frac{\gamma}{B_k(\alpha, \beta)} \int_x^{\infty} \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k} dx$</td>
</tr>
<tr>
<td>3</td>
<td>$f_s(x) = \frac{2\pi}{\log(\frac{1}{x^2})} e^{-\lambda x^2} I_{1/2}(x) I_{-1/2}(x) ; x > 0, \lambda > 2$</td>
<td>$\frac{2\pi}{\log(\frac{1}{x^2})} \int_x^{\infty} e^{-\lambda x^2} I_{1/2}(x) I_{-1/2}(x) dx$</td>
</tr>
<tr>
<td>4</td>
<td>$f_s(x) = \frac{e^{-x}}{\log 3} I_{1/2}(x) K_{1/2}(x) ; x > 0$</td>
<td>$\frac{1}{\log 3} \int_x^{\infty} e^{-x} I_{1/2}(x) K_{1/2}(x) dx$</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>S. N</th>
<th>Probability distribution</th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_s(k, x) = \frac{2}{\Gamma_k\left(\frac{1}{2}\right)} e^{x^2/k} : 0 < x < \infty, k > 0$</td>
<td>$\frac{e^{x^2/k}}{\int_x^{\infty} e^{x^2/k} dx}$</td>
</tr>
<tr>
<td>2</td>
<td>$f_s(x, \gamma, \alpha, \beta, k) = \frac{\gamma^{k-1}}{B_k(\alpha, \beta)} \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k}$; $x > 0$</td>
<td>$\frac{\gamma}{B_k(\alpha, \beta)} \int_x^{\infty} \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k} dx$</td>
</tr>
<tr>
<td>3</td>
<td>$f_s(x) = \frac{2\pi}{\log(\frac{1}{x^2})} e^{-\lambda x^2} I_{1/2}(x) I_{-1/2}(x) ; x > 0, \lambda > 2$</td>
<td>$\frac{e^{-\lambda x^2} I_{1/2}(x) I_{-1/2}(x)}{\int_x^{\infty} e^{-\lambda x^2} I_{1/2}(x) I_{-1/2}(x) dx}$</td>
</tr>
<tr>
<td>4</td>
<td>$f_s(x) = \frac{e^{-x}}{\log 3} I_{1/2}(x) K_{1/2}(x) ; x > 0$</td>
<td>$\frac{e^{-x} I_{1/2}(x) K_{1/2}(x)}{\int_x^{\infty} e^{-x} I_{1/2}(x) K_{1/2}(x) dx}$</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>S. N</th>
<th>Probability distribution</th>
<th>$\kappa(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_s(k, x) = \frac{2}{\Gamma_k\left(\frac{1}{2}\right)} e^{x^2/k} : 0 < x < \infty, k > 0$</td>
<td>$\int_x^{\infty} x e^{-x} dx$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\int_x^{\infty} e^{-x} dx - x$</td>
</tr>
<tr>
<td>2</td>
<td>$f_s(x, \gamma, \alpha, \beta, k) = \frac{\gamma^{k-1}}{B_k(\alpha, \beta)} \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k}$; $x > 0$</td>
<td>$\int_x^{\infty} x \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k} dx$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\int_x^{\infty} x \left(1 - e^{-\gamma x^2}\right)^{\alpha-1} e^{-\gamma x^2/k} dx - x$</td>
</tr>
</tbody>
</table>
IV. CONCLUSIONS

For this paper the authors have concluded that above discussed theorems 3.1, 3.4, 3.7 and 3.9 (probability distributions) have area under the curve is unity. Also authors discussed like cumulative density function, mean, variance, moments and M.G.F.’s for these theorems. By the help of these theorems the authors have obtained in tabulated some applications of real life.

REFERENCES

5. E. D. Rainville, special function, the Macmillan.
7. F. Merovci, the power product inequalities for the k-gamma function, international journal of mathematical analysis, vol. 4, no. 21, pp. 1007-1012, 2010.

AUTHORS PROFILE

Dr. Indu Bala Bapna, has done M.Sc., PhD from M.L.S.U. Udaipur (Rajasthan) and at that working as a Principal in M.L.V. Govt. P.G College at Bhilwara in Rajasthan (India). She has published more than 10 research papers in reputed national and international journals and also has 35 years teaching experience in College Education. She is more interested in research areas like as fractional calculus, special functions, distribution theory and integral Transforms etc.

Mr. Radhe Shyam Prajapati, is presently research scholar of M.D.S. University at Ajmer in Rajasthan (India). He has done M.Sc., MPhil, SET and pursuing PhD under the supervision Dr. Indu Bala Bapna and SET. He has worked as Assistant Professor in M.L.V. T. and Engineering College at Bhilwara (Rajasthan) till 6 years. He is interested in areas like applications differential and integral equations, fractional calculus probability distributions and special functions and special functions.