Grid Stability Analysis with LCL Filter using 1-phase Inverter

D V V V CH Mouli, M.Suneel Kumar, P.Kalpana

Abstract: The demand for power generation is increased day to day due to increase of industrial loads as well as domestic loads like machines, air conditioners, etc. This will lead to increase of utilization of natural resources. Whenever natural resources with solid state devices interfaced with grid, the stability of the grid will become an important issue. So the additional use of LCL filter will lead to protect the stability of the grid along with its closed loop dynamic control. In this paper the grid stability is analyzed using LCL filter with 1-phase inverter in open loop as well as closed loop. Different LCL configurations along with transfer function analysis are also proposed in this paper. Interfacing of renewable sources with solid state non linear switching devices cause the harmonics and other disturbances on the grid. The LCL filter will reduce these harmonics and increase the quality of the grid. The application of LCL filter for weak grids is very significant in the sense of stability.

Keywords: LCL filter, PI control, bode diagram, resonance, grid, block diagram, signal flow graph

I INTRODUCTION

Grid stability is depending up on the parameters like voltage swings, frequency swings, harmonics, etc. To maintain the voltage stiffness Grid interfacing are used with LCL filter. In 3-phase system feedback control is used by taking the voltage and current parameter with PLL and abc-dq-abc transformation. In this paper the 1-phase system is analyzed. With the help of grid voltage parameter, the feedback control is adopted with PI control to vary the modulation index for inverter as well as for one of the inductor to vary the inductance value. Normally Non conventional sources are interfaced with grid using solid state power converters and firing controllers whether their generation type is either DC or AC. Grid stability maintenance is very important when solid state switching devices are interfaced to it. The LCL circuit is used with grid to improve its stability. Grid voltage stiffness will depend up on the inverter modulation index MI. In addition to the inverter MI, the values of LCL parameters of the filter and type of LCL configuration will also influence the grid voltage stiffness and stability.

Various transfer function’s [1-3] stability analysis will help to design LCL circuit for improving grid stability. In this paper different transfer functions at LCL open loop and at closed loop PI control is developed and analyzed for stability with using bode plots. Switching and steady loads are connected at grid point to observe the voltage patterns of the grid using simulation. The total resistance for damping can be identified using resonance condition. The block diagram representation with line graph will provide the transfer function and its frequency analysis identifies its stability region. In case of 3-phase inverter used then obviously the LCL filter is also used in all 3-phases to improve the voltage stability further even though less harmonics in 3-phase system.

II GRID VOLTAGE AT VARIOUS MI

A. Methodology & Experimentation :

The given below fig. 1 in block diagram indicates the LCL filter connected between 1-phase inverter and Grid

Fig. 1. Grid connected with Inverter through LCL filter at different modulation index of inverter and of L2, the grid voltage patterns are observed. These observations are made without pi and feedback control. The grid voltage pattern without lcl filter and with lcl filter is shown in fig. 2 and fig. 3 respectively.
At the modulation index of 0.2 for inverter as well as for the inductor L2, the grid voltage showing oscillations at positive and negative peaks as shown in Fig.4.

From the Fig.4, it is observed that modulation index will also one of the factor to determine the stability of the grid. The oscillations are different in grid voltage at different modulation indices.

B. Results & Discussions:

At different modulation index, the grid voltage peak levels are also changed. Different voltage levels at various modulation index is indicated in below Table I.

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Modulation index of Inductor L2</th>
<th>Peak value of Voltage (in Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>95</td>
</tr>
</tbody>
</table>

At Inverter modulation index = 0.4

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Modulation index</th>
<th>Peak value of Voltage (in Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>108</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>100</td>
</tr>
</tbody>
</table>
At Inverter modulation index =0.6

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Modulation Index</th>
<th>Value of L₂ in henry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

At Inverter modulation index =0.8

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Modulation Index</th>
<th>Value of L₂ in henry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>88</td>
</tr>
</tbody>
</table>

At Inverter modulation index =1

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Modulation Index</th>
<th>Value of L₂ in henry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

The voltage levels are decreasing as modulation index is raised. But the oscillations in the wave are decreased. At high index voltage drops are high due to high currents. The values L₂ at different modulation index based on the voltage and current measurements in the inductor is given in the Table II. The 3-phase grid voltage at modulation index of 0.8 and at the inductor L₂ value of 1mH is shown in Fig 5. The 3-phase grid voltage is controlled in open loop [4]. In closed loop method current and voltage feedbacks are taken [5,6]. The current values are converted from abc/dq transformation [7,8] to control the firing angle[9].

III CLOSED LOOP GRID VOLTAGE CONTROL USING PI

A. Methodology with Experimentation:

In closed loop control, the pulse width modulation levels of inverter as well as inductor L₂ is varied automatically by comparing rectified grid voltage with reference voltage through PI control. The total closed loop control can be represented with block diagram[1,8–11] to analyze the stability by different means. The closed loop control can be used either for inverter firing or for Inductor firing or for both at the same time. Fig.6 shows the Grid voltage waveform for both firing controls. The Fig. 7 shows the block diagram of closed loop control of the grid voltage with V_{ref}=100v.

Fig. 6. Grid Voltage in closed loop control with both Inductor and Inverter firings
Grid Stability Analysis with LCL Filter using 1-phase Inverter

The closed loop control represented in block diagram mode and it is shown in Fig. 8. Gpw is the transfer function of whole inverter control and Gpw1 is the transfer function of inductor L_2 controller. The only LCL filter block diagram [12] is represented in a simpler manner as shown in Fig. 9.

At resonance condition [13-17] of LCL filter, the frequency will be obtained by using the following equations:

i) If Resistance R_g is neglected

$$ x_{L1} = \frac{x_{L2g} \cdot x_c}{(x_{L2g} - x_c)} \quad (1) $$

Where $x_{L2g} = x_{L2} + x_g$ \hspace{1cm} (2)

The Resonance frequency $\omega_r = 4461.05$ rad/sec

ii) If Resistance R_g is considered the resonant condition is given as

$$ x_{i2} = \left[\left(x_{L2g} - x_c \right) \left(x_{L2g} \cdot x_c \right) + R_g \cdot x_c \right] + \left(R_g^2 + (x_{L2g} - x_c)^2 \right) \quad (3) $$

The resonant frequency can be identified by solving higher order polynomial with using (3). The transfer function $[i_2(s) / V_i(s)]$ at $i_2 = 0$ is \[18-20\]

$$ \left(\frac{i_2}{V_i} \right) = \frac{s}{L_1 \left(s^2 + \frac{1}{L_1C} \right)} \quad (4) $$

By substituting the values of L_1, C the transfer function is obtained as
The transfer function \(\frac{V_c(s)}{V_i(s)} \) at \(i_2 = 0 \) is

\[
\frac{V_c(s)}{V_i(s)} = \left[\frac{1}{L_1 C} \right] \frac{1}{\frac{1}{s^2} + \frac{1}{L_1 C}}
\]

The frequency analysis of (4),(6) in s-plane is shown in fig. 10a, fig.10b respectively. By observing the phase plots of the two figures, Fig.10a is showing closed loop stability and Fig.10b is not giving closed loop stability. The transfer function \(G_{pw} \) can be found by measuring the peak value of \(V_L(s) \) and root mean square value of \(V_i(s) \). The time delay for inverter is taken as \(\tau = 10 \text{ms} \). The PI controller [21] parameter values are taken as \(K_p = 10 \), \(K_i = 1 \). The transfer function \(G_{pw} \) is equal by using (8)

\[
G_{pw} = \left(K_p + \frac{K_i}{s} \right) \left(K(s) e^{-\tau s} \right)
\]

The corresponding bode plot for the given transfer function is shown in Fig. 12. The plot indicates the closed loop stability of the system. The transfer function \(i_2/V_L \) at \(V_L = 0 \) is given in (12)

\[
[i_2 / V_L] \times G_{pw} = \left(\frac{10^{-7} s^2 + 0.1040.11s^2 + 98683.93s + 98683}{s^3 + 0.1s^2 + 98683.93s + 98683} \right)
\]

By substituting values for \(G_{pw} \), by using gain formula the transfer function \(i_2/V_L \) is mentioned in (11)

\[
-\frac{i_2}{V_L} = \frac{(10^{-7} s^2 + 0.1040.11s^2 + 98683.93s + 98683)}{s^3 + 0.1s^2 + 98683.93s + 98683}
\]

The signal graph for identifying transfer function \(i_2/V_L \) at \(\text{Vref} = 0 \) is shown in Fig. 11

\[
K(s) = \left(\frac{-0.592}{s^2} \frac{s+100}{(s+0.001)(s-3.14)(s+3.14)} \right)
\]
\[
\frac{i_2(t)}{V_i(t)} = \frac{cs}{1 - [(L_1 cs^2 + 1)(L_2 cs^2 + 1)]}
\] (12)

C. Results & Discussions

The variation of magnitude of \(i_2/V_i\) and its phase angle with variation of value \(L_2\) is given in the Table III

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Value of (L_2) in henries</th>
<th>Magnitude of (i_2/V_i) in mho</th>
<th>Phase angle of (i_2/V_i) (in radians)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.02</td>
<td>(\pi/2)</td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>0.018</td>
<td>(\pi/2)</td>
</tr>
<tr>
<td>3</td>
<td>0.085</td>
<td>0.017</td>
<td>(\pi/2)</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.015</td>
<td>(\pi/2)</td>
</tr>
</tbody>
</table>

Variation of \(i_2/V_i\) with \(L_2\) at constant frequency is shown in the graph Fig 13a and Fig 13b.

Fig.13a . Variation graph of magnitude \(i_2/V_i\)

Fig 13b . Variation graph of angle of \(i_2/V_i\)

C.1 Reconfiguration of LCL Filter:

The Grid voltage stability depends not only in firing angle index. It also depends either in parameter values or configuration. Modified LCL filter is shown in Figure 14.

The closed loop control with modified LCL filter reduces the THD level in Grid voltage. The values of \(R_1=1\ \Omega\) and \(R_2=1\ \Omega\). The extra resistances are used for damping the oscillations in the output. The THD level is reduced by 8%. In this configuration the resonance condition is obtained as given in (13)

\[
\frac{x_{eq}}{x_1} = \frac{r_1}{r_1'}
\] (13)

\[
r_1 = \left(\frac{R_2}{R_1} - x_{12g} x_{eq}\right) - x_{12} \left[x_{eq} + x_{12g} \left((R_1 + R_2)^2 + x_c^2\right)\right]
\] (14)

\[
r_1' = R_{eq} + R_g \left((R_1 + R_2)^2 + x_c^2\right)
\] (15)

\[
x_1 = x_{12} x_{eq} + x_{12g} \left((R_1 + R_2)^2 + x_c^2\right)
\] (16)

\[
x_1' = x_{eq} + x_{12g} \left((R_1 + R_2)^2 + x_c^2\right)
\] (17)

\[
R_{eq} = (R_1 R_2)(R_1 + R_2) + x_c^2 R_2
\] (18)

\[
x_{eq} = \left[x_c (R_1 R_2) - (x_c R_2) (R_1 + R_2)\right]
\] (19)

In closed loop control with modified LCL filter the Grid voltage is shown in Figure 15

Fig 14. Modified LCL filter

Fig 15 Grid voltage with modified filter
IV. CONCLUSION

The importance of interfacing renewable sources with Grid is increasing day to day. The interfacing of the Grid with solid state nonlinear switching devices used for renewable sources are causing of reduction in Grid stability. So the LCL filter analysis will enhance the Grid stability with better open and closed loop feedback control. The simulation provides theoretical analysis to implement for Grid stations. The Grid voltage gives highly sinusoidal with harmonics by using LCL filter. The stability analysis of different transfer functions will help to better design for LCL filter. Overall transfer functions can easily found with effective system block diagram representation. The importance of LCL filter for grid stability is inevitable even for 3-phase systems too.

APPENDIX

A. Circuit parameter values

\[
L_1 = 0.1 \, \text{H} , \quad C = 1 \times 10^6 \, \text{F} , \quad L_2 = 0.1 \, \text{H}
\]

Load : 10 KW, 1 KVAR inductive at 50Hz

At half wave rectifier

\[
R = 1000\, \Omega , \quad C = 1 \times 10^4 \, \text{F}
\]

REFERENCES

4. Rafael Peña-Alzola, Marco Liserre, Frede Blaabjerg, Rafael Sebastián, Jörg Dannehl, and Friedrich Wilhelm Fuchs, “Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters” IEEE transactions on power electronics,letters, vol. 28, no. 6, June 2013,
6. Javier Roldán-Pérez, Emilio J. Bueno, Rafael Peña-Alzola, Alberto Rodríguez-Cabero, “All-Pass-Filter-Based Active Damping for VSCs With LCL Filters Connected to Weak Grids”, IEEE transactions on power electronics, vol. 33, no. 11, November 2018, pp 9989–9991
7. Marwa Ben Sa’d-Romdhane, Mohamed Wissem Nauzer, Ibtm Slama-Belkhodja, and Eric Monmasson, “Robust Active Damping Methods for LCL Filter-Based Grid-Connected Converters”, IEEE transactions on power electronics, vol. 32, no. 9, September 2017,pp 6739-6750
18. Qian Liu, Li Peng, Yong Kang, Shiling Tang, Deliang Wu, and Yu Qi, “A Novel Design and Optimization Method of an LCL Filter for a Shunt Active Power Filter”, IEEE transactions on industrial electronics, vol. 61, no. 8, August 2014,pp 4000-4010

AUTHORS PROFILE

D V V V CH Mouli, working as a professor, obtained Btech, Mtech from Andhra university and Anna university respectively in 1996 and 2000.He obtained PhD from JNTU Hyderabad in 2016.He published many research papers in international indexed journals. He is life member of ISTE and Member of IEEE.He is chairing conference sessions and obtained best paper award.His main research area is in power systems with controllers, Facts devices, etc.

M Suneel kumar, working as an assistant professor, obtained Mtech . He published many papers in international indexed journals and conferences.attended many workshops. His main focus on research is in power electronics area.

P Kalpana a, PG Scholar, obtained Btech from aurora’s engineering college Hyderabad . She is presently PG scholar in CMR College of engineering and technology. Her area of interest is in power systems and control.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

Retrieval Number: E686501852020206BEJESP
DOI:10.35940/ijrte.E6865.018520

Published By: Blue Eyes Intelligence Engineering & Sciences Publication