Assessment of Blast-Induced Ground Vibration Frequency in Opencast Coal Mine: a Multivariate Statistical Regression Model

Anand Kumar, Sunil Kumar, Sanjay Kumar Sharma, Nawal Kishore, C. S. Singh

Abstract: The blasting is a useful technique to explore and extract the mineral resources. It gives desired output with several negative impacts in surrounding mining areas. The ground vibration is one of the most concern phenomena produced by blasting. The peak particle velocity and frequency assess the seismic hazard, risk, and the human discomfort. Frequency plays a key role to define the damage criteria limits and human discomfort. The frequency of blast-induced ground vibration depends mainly on amount of explosive, characteristic properties of rock mass and distance etc. A total number of 32 datasets have been recorded in the form of velocity components and corresponding frequencies such as; Radial, Vertical, and Transverse at an opencast mine ‘A’ located in Chhattisgarh. The Indian Standard developed the safe level of peak particle velocity at frequency range (<8Hz, 8Hz - 25Hz, >25Hz) for the various types of structures close to mine. An attempt has been made to establish the relationship among parameters such as; burden, spacing, stemming, charge, hole depth, hole diameters and distance, etc. by multivariate statistical regression analysis (MVSRA) for the prediction of ground vibration frequency. The Coefficient of Determinate (CoD) between measured and predicted frequencies has also been studied.

Keywords: Frequency; Ground Vibration; Simple linear regression; MVSRA; Blast Design parameters

1. INTRODUCTION

Coal (hydrocarbon) is one of the most essential mineral resource for growing industrial country in the world. It has become the backbone of several countries (i.e. no energy resources no industry). The underground and opencast mines are larger producer of coal with respect to demand. Blasting technique is frequently being used in both cases, underground and opencast mining operations. During the charged hole firing, the huge amount of energy released in form of pressure (50GPa) at temperature (5000k) [1-4]. On the other hand, the utilization of explosive is not much reliable due to complex nature of rock mass and irregular formation. Therefore, only small portion (20%-30%) of released energy has been used as desirable output. The remaining portion of released energy is undesirable phenomena, like airover pressure, ground vibration, back break, over break, and fly rock, etc. [5].

In the present scenario, opencast and underground mine operation have been developed at large scale to meet out the and demand of coal. The huge amount of explosive are being used to fragmentation and displacement of overburden rock mass at lower consumption of time and efforts. Blasting creates nuisance to community in nearby villages close to mine [6]. The peak particle velocity may be defined as maximum value among radial, vertical, and transverse velocity. Frequency corresponding to maximum value is defined as main frequency of PPV. Peak particle velocity and corresponding frequency depends mainly on the amount of explosive fired within a delay operator and monitoring distance. They are affected by physical properties of rock and formation of ground where the seismic wave radiating outward away from source [6]. The characteristic of rock mass changes from one place to another place due to complex nature of rock mass (i.e. inhomogeneous character of rock). The direction of seismic wave changes one point to another point due to this cause. In case of homogeneous medium wave propagate in one direction. The intensity of seismic wave changes due to presence of cavity, discontinuity, fractures, and tectonic fault in rock [7-10]. Peak vector sum, frequency and PPV are most effective parameters that are used to evaluate structural response and human discomfort caused by blasting. The frequency plays a key role in evaluation of ground vibration and structural response. If structures come under the strong seismic wave propagation range; it depends on ground vibration frequency [11]. The sensitivity of human being depends mainly on ground vibration PPV, corresponding frequency, event duration and event frequency [12]. When explosive fired within a blast hole, dynamic stress is generated around hole and it produces elastic deformation in form of seismic wave that propagate away from the blast hole [13]. In case of homogeneous medium seismic wave is purely compressive motion and having spherical wave front. It is not practical due to complexity of medium (i.e. inhomogeneous medium). The seismic waves are classified such as; body wave (longitudinal or p-wave, transverse or s-wave) and surface wave (Rayleigh wave, L-wave) [14]. According to Dowding (1985), ground vibration is a combined result of body wave and surface waves that are induced by blasting. Both waves are combined in a signature as shown in figure (1). Individual wave front of tri-axial component of PPV and corresponding frequency are as shown in figure (2) [6].

Revised Manuscript Received on January 10, 2020.

Mr. Anand Kumar, Pursuing Ph.D., Department of Mining Engineering, IIT (BHU) Varanasi, Uttar Pradesh, India. E-mail: anandkumar.rs.mn14@itbhu.ac.in

Mr. Sunil Kumar, Pursuing Ph.D., Department of Mining Engineering, IIT (BHU) Varanasi, Uttar Pradesh, India. E-mail: sunil.es.mn13@itbhu.ac.in

Prof. Sanjay Kumar Sharma, Professor, Department of Mining Engineering, IIT (BHU) Varanasi, Uttar Pradesh, India. E-mail: sksharma.mn@itbhu.ac.in

Dr. C. S. Singh, Department of Mining Engineering, IIT (BHU) Varanasi, Uttar Pradesh, India. E-mail: drcssingh@rediffmail.com

Dr. Nawal Kishore, Department of Mining Engineering, IIT (BHU) Varanasi, Uttar Pradesh, India. E-mail: nwalkishore.mn@itbhu.ac.in
Assessment of Blast-Induced Ground Vibration Frequency in Opencast Coal Mine: a Multivariate Statistical Regression Model

II. STUDY AREA

The study has been conducted at an opencast coal mine 'A', which lies at latitude 22° 19’ 14.988" N and longitude 82° 31’ 30.67” E located in Chhattisgarh and shown in figure (3). Granite, Dolerite, Bauxite, fireclay, and Limestone deposits are also found in this area. The overburden rock mass is of medium to coarse grain sandstone, shale, shaly sandstone, and mostly weathered sandstone, etc. The mine has mostly semi-consolidated to unconsolidated sedimentary rock and bituminous coal of Gondwana age [16-17].

III. MATERIALS AND METHOD

A. Geometry, Equipment and Data acquisition

It is difficult to monitor or acquire field data sets due to complex environment of mine. Therefore, a survey line has been drawn approximately 1400m long from blast site to last monitoring point. Along the survey line, 3-4 seismographs (Nomis) are put down simultaneously at a particular interval (100m). Nearest and farthest location of seismographs are 50m, 1400m, respectively from blast site. Seismographs contains tri-axial geophone and one microphone that measure the three components of PPV with their corresponding frequencies as well as resultant peak particle velocity, frequency, peak vector sum and airover pressure, respectively as shown in figure (4). A total number of 32 datasets have been acquired for this study and several other parameters such as; burden, spacing, stemming, sub-drilling depth, maximum charge per delay, total charge, monitoring distance, hole depth, hole diameter, booster per hole (100-1200gm), and charge per hole (42.88-475kg), etc. are listed in table (I). The delay operators such as; 17ms, 42ms inline and cross line, respectively along with DTH delay (200-250ms). At present blasting sequence is staggered as shown in figure (5).

Table-1: Input Parameters

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring distance (m)</td>
<td>50-1400</td>
</tr>
<tr>
<td>Maximum charge per delay (kg)</td>
<td>85.76-475</td>
</tr>
<tr>
<td>Total charge (kg)</td>
<td>2230-8880</td>
</tr>
<tr>
<td>Total booster (kg)</td>
<td>3.1-23.4</td>
</tr>
<tr>
<td>No. of blast hole</td>
<td>14-75</td>
</tr>
<tr>
<td>Blast hole diameter (mm)</td>
<td>159-381</td>
</tr>
<tr>
<td>Blast hole Depth (m)</td>
<td>6.3-27</td>
</tr>
<tr>
<td>Burden (m)</td>
<td>8-Apr</td>
</tr>
<tr>
<td>Spacing (m)</td>
<td>9-Apr</td>
</tr>
</tbody>
</table>
The amplitude of propagating seismic wave decays exponentially with dominant frequency and distance covered by it only in homogeneous medium. In case of inhomogeneous medium, the frequency of ground vibration changes with direction. Thus, all the frequency components are monitored in radial, transverse, and vertical direction at particular interval to assess the intensity of ground vibration and their impacts on surrounding structures and community close to mine. Indian standard has proposed a frequency (<8Hz, 8Hz-25Hz, >25Hz) based on peak particle velocity damage criteria limits for domestic structures. The multivariate statistical regression analysis (MVSRA) has been used to determine the coefficient of input variables and statistical significance. A relationship has been established among measured output variable and input variable parameters for the prediction of frequency. The relations are shown in equations (4), (5), (6), and (7). The measured output and input variables with predicted output are listed in tables (I & II). Simple linear regression is used to check the correlation between measured and predicted output The Coefficient of Determinant (CoD) has also been determined such as; 58.60%, 60%, 57.46%, and 51.41% as shown in figures (6), (7), (8), and (9) for radial, transverse, vertical, and corresponding PPV’s, respectively.

A. Radial Frequency (R_r) Estimation

$$R_r = 18.894 - 0.00785[D, m]+0.1082[MCPD, kg]$$
$$+0.00102[TC, kg]+6.5308[B, m]-2.571[S, m]$$
$$-0.462[NH]+0.7733[TB, kg]-4.0647[HD, m]$$
$$+0.057[HD], [mm]$$

B. Transverse Frequency (T_r) Estimation

$$T_r = 17.328-0.006[D, m]+0.08115[MCPD, kg]$$
$$+0.000344[TC, kg]+4.993[B, m]-1.558[S, m]$$
$$-0.3485[NH]+0.2552[TB, kg]-2.5817[HD, m]$$
$$+0.0176[HD], [mm]$$

C. Vertical Frequency (V_r) Estimation

$$V_r = 9.676-0.00795[D, m]+0.12278[MCPD, kg]$$
$$+0.000709[TC, kg]+7.0416[B, m]-1.245[S, m]$$
$$-0.3907[NH]+0.35589[TB, kg]-3.9162[HD, m]$$
$$+0.04088[HD], [mm]$$
D. Corresponding PPV’s Frequency (Cf) Estimation

\[C_f = 18.702 - 0.0097[D, \text{m}] + 0.10095[MCPD, \text{kg}] + 0.00108[TC, \text{kg}] + 5.1174[B, \text{m}] - 1.789[S, \text{m}] - 0.4416[NH] + 0.9458[TB, \text{kg}] - 3.968[HD, \text{m}] + 0.06435[HDI, \text{mm}] \quad (7) \]

Where, D- Distance (m), MCPD- Maximum charge per delay (kg), TC- Total Charge (kg), B- Burden(m), S- Spacing (m), TB-Total Booster (kg), NH- No. of Holes (cont.), HD- Hole Depth (m), and HDI- Hole Diameter (mm).

Table- II : Output events by Measured and Predicted (MVSRA)

<table>
<thead>
<tr>
<th>Output parameters</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Frequency (Hz)</td>
<td>Radial 1.2-25.2</td>
</tr>
<tr>
<td></td>
<td>Vertical 1.3-19.1</td>
</tr>
<tr>
<td></td>
<td>Transverse 1.2-23.5</td>
</tr>
<tr>
<td></td>
<td>Corresponding PPV’s 1.6-25.2</td>
</tr>
<tr>
<td>Predicted Frequency (Hz) (MVSRA)</td>
<td>Radial 1.52-15.89</td>
</tr>
<tr>
<td></td>
<td>Vertical 2.36-15.98</td>
</tr>
<tr>
<td></td>
<td>Transverse 1.51-14.89</td>
</tr>
<tr>
<td></td>
<td>Corresponding PPV’s 1.39-15.85</td>
</tr>
</tbody>
</table>

On the basis of used datasets, the percentage distribution of measured and predicted frequency at different range are shows by pi-chart in figures (10 & 11), respectively. Lower frequency contain higher percentage of risk but it depends on ground vibration velocity. The measured values are 68.75% at (<8Hz), 28.11% at (8-25Hz), and 3.11% at (25Hz<) while predicted values 84.36% at (<8Hz), 15.63% at (8-25Hz), and 0.0% at (25Hz<). However, all the frequency range having no causes of hazard due to lower strength of ground vibration velocity because of acceptable amount of explosive used with appreciable distance to community from mine face. A comparative building block between main measured and main predicted frequency is shown in figure (12).
The authors are thankful to all mining officers of a mine ‘A’ providing necessary facilities during investigations of Chhattisgarh area.

ACKNOWLEDGMENT

The authors are thankful to all mining officers of a mine ‘A’ for providing necessary facilities during investigations of Chhattisgarh area.

REFERENCES

17. Regional Director North Chhattisgarh region, “Ground Water Brochure of Korba District, Chhattisgarh 2012-2013.”

AUTHORS PROFILE

Mr. Anand Kumar, is pursuing Ph.D. from Department of Mining Engineering, IIT (BHU) under the supervision of Prof. S. K. Sharma and co-supervision of Dr. C.S. Singh, department of Mining Engineering IIT (BHU) Varanasi - 221005 UP India.

Email ID: anandkumar.rs.min14@iitbhu.ac.in, anandbhu12@gmail.com

Contact: +919651058091, +917309839498

Mr. Sunil Kumar, is pursuing Ph.D. from Department of Mining Engineering, IIT (BHU) under the supervision of Prof. S. K. Sharma, department of Mining Engineering IIT (BHU) Varanasi - 221005 UP India.

Email ID: sunil.rs.min13@iitbhu.ac.in

Prof. Sanjay Kumar Sharma, Department of Mining Engineering, IIT (BHU), Varanasi- 221005
Email ID: sksharma.mm@iitbhu.ac.in

Dr. Nawal Kishore, Department of Mining Engineering, IIT (BHU), Varanasi- 221005
Email ID: nawalkishore.mm@iitbhu.ac.in

Dr. C.S. Singh, Mining Engineering, IIT (BHU)Varanasi -221005 Email ID: drcssingh@rediffmail.com