A 3.3V, 24dBm CHT Integrated CMOS 180nm Power Amplifier for NB-IoT Application

Arvind Singh Rawat, Jagadheswaran Rajendran, Harikrishnan Ramiah, Sofiyah Sal Hamid, Nuha Rhaffor

Abstract: In this project, a 180 nm capacitive harmonic termination (CHT) CMOS-based power amplifier (PA) is designed for the Narrow-Band Internet of Things (NB-IoT) application. The PA’s aimed operating frequency is between 1.9 GHz and 2.1 GHz. At schematic level simulation, the PA provides a power gain of 14 dB and a compressed output power of 24 dBm. With a resulting peak OIP3 of 33 dBm, the average power added efficiency (PAE) achieved is 40 %. The CMOS PA operates with a biasing gate voltage of 1.2 V under the voltage headroom of 3.3 V. The CHT CMOS PA provides good efficiency with negligible trade-off between linearity and output power.

Keywords: CMOS, NB-IoT, Class-J, power amplifier, linearity

I. INTRODUCTION

Cyberspace communication system design has recently led to the growing demand for wireless devices. In the rapidly increasing wireless communication network, low-power consumption devices are required to maintain and prolong battery life [1][2]. Narrow-band Internet of Things (NB-IoT) launched IoT applications based on a 3GPP standard based on low-power wide area.

The power amplifier (PA) should be effective in terms of efficiency and linearity across the required power level in order to provide an efficient and reliable data exchange between the RF receiver and transmitter in the transceiver system. CMOS PAs have been extensively studied to fulfill and satisfy low cost specifications for miniature range transceivers [3][4]. Due to the strict protocol requirements and the massive trade-off between efficiency and linearity in the CMOS process, the design of CMOS-based PAs has become arduous and challenging compared to low-trade GaAs-based PAs [5].

An optimum impedance matching network is needed to balance the trade-off between efficiency and linearity in CMOS PAs [6]. By applying a precise impedance matching network between the main PA input and output stage, the optimum efficiency, linearity and output power can be obtained. The input matching network is needed to convert the 50-ohm input impedance into the optimum impedance seen at the gate of the main PA transistor to achieve optimal results.

II. DESIGN METHODOLOGY

A. Analysis of Output Impedance for CHT PA

The Class-J was first introduced by Cripps in 2006 [7]. The efficiency and linearity of the class-J PA is equivalent to that of the class-AB PA. Moreover, the frequency band that restricts the transmission line to short harmonics is not essential in which it contributes to the Class-J PA broadband operation [8]. By implementing the reactive harmonic termination technique, the efficiency in class-J PA is improved. A Class-J CMOS PA’s basic schematic is depicted in Fig. 1. For the PA, a deep-class AB operation is configured to rectify the current waveform produced at the output signal.

Therefore,

\[I_T = \begin{cases} -I_{\text{max}} \sin \theta, & \pi < \theta < \pi \\ 0, & \pi < \theta < 2 \pi \end{cases} \]

The fundamental current component through the output impedance matching network is given as:

\[I_F = I_c \sin (\theta + \phi) \]

where \(\phi \) exemplifies the output matching network’s phase deviation. \(I_c \) denotes the fundamental current. The current, \(I_c \) that flows through \(C_{PS} \), is:

\[I_c = I_{bo} - I_F - I_T \]
where \(I_{DH} = I_{\text{max}} / \pi \). The output voltage, \(V_0 \) is:

\[
V_0 = \frac{1}{\omega C_{2fo}} \left[\int_0^{2\pi} I_c \, d\theta + \frac{2}{\pi} \int_0^{\pi} I_c \, d\theta \right]
\]

(4)

Hence, for conduction angle of 0 < \(\theta < \pi \),

\[
V_{ol} = \frac{1}{\omega C_{2fo}} \left[\int_0^{\pi} I_{\text{max}} \sin (\theta + \phi) - I_{\text{max}} \sin \theta \, d\theta \right]
\]

\[-\frac{1}{\omega C_{2fo}} (I_{\text{max}} + 2 I_1 \cos \phi) \]

(5)

The out-of-phase current and voltage are indicated by the negative sign. For conduction angle of \(\pi < \theta < 2\pi \), \(I_1 \) in (3) is equal to 0. Thus,

\[
V_1 = \frac{1}{\omega C_{2fo} \pi} \left[I_{\text{max}} \left(-2 \sin \theta + \frac{1}{\pi} \cos \theta + \theta \sin \theta - 1 \right) - I_1 \left(\sin \theta \cos \phi - \frac{1}{4} \theta + \frac{1}{4} \sin (2\theta \cos \phi + 1 + \cos 2\theta) \right) \right]
\]

\[+ \frac{j}{\omega C_{2fo} \pi} \left[I_{\text{max}} \left(\frac{1}{\pi} \sin \theta - \cos \theta - 2(1 - \cos \theta) \right) - I_1 \left(\cos \theta (1 - \cos \theta) - \frac{1}{2} \frac{1}{4} \cos (1 - 2\cos \theta) - \sin \theta (\theta - \frac{1}{2} \sin 2\theta) \right) \right] \]

(7)

\[
V_2 = \frac{1}{\omega C_{2fo} \pi} \left[I_{\text{max}} \left(\frac{1}{\pi} \left(\frac{1}{2} \sin 2\theta - \frac{1}{4} \cos 2\theta + \frac{1}{4} \sin 2\theta \right) \right) \right] + I_1 \left(\sin(\theta \cos \phi) - \frac{1}{3} \sin \phi + \frac{1}{6} \sin(3\theta \cos \phi) - \frac{1}{2} \sin 2\theta \cos \phi \right)
\]

\[-\frac{j}{\omega C_{2fo} \pi} \left[\frac{1}{2} I_1 \left(- \sin \theta \sin \phi + \frac{1}{3} \sin 3\theta \sin \phi \right) \right] - I_{\text{max}} \left(\frac{1}{2} \frac{1}{2} \sin 2\theta - \theta \cos 2\theta + \cos 2\theta - 1 \right) \]

(8)

B. Analysis of CHT PA

To conduct class-J operation from deep class-AB mode, the voltage waveform in the time domain has to be shifted. The shift in voltage waveform is contributed by the reactive components of (7) and (8). A half-wave rectified current waveform is depicted in Fig. 2 (a). Fig. 2 (b) exemplifies that the introduction of a capacitor harmonic termination provides a 45° shift in the voltage waveform. Equation (9) and (10) elucidate the characteristics of the current and voltage waveforms.

\[
I(\theta) = I_{\text{max}} \left(\frac{1}{\pi} \frac{1}{2} \cos(\theta) + \frac{2}{3\pi} \cos(2\theta) + \ldots \right)
\]

(9)

\[
V(\theta) = \pi \sqrt{d} \left(\frac{1}{\pi} - \frac{1}{2} \cos(\theta + \delta) + \frac{2}{3\pi} \cos(2(\theta + \delta)) - \ldots \right)
\]

(10)

where \(\delta \) is the phase shift of the voltage waveform.

Fig. 2. (a) Half-wave rectified current waveform. (b) Modification of the voltage waveform.
In order to realize a class-J mode operation, the proportion of the 2nd order harmonic voltage and fundamental voltage, V_{2f_0} / V_{f_0} should be $\cos(45^\circ)/2$. Therefore, if $V_{f_0} = \sqrt{2}/2$, then $V_{2f_0} = -1/4$ and the 2nd order harmonic impedance is obtained from (11).

$$Z_{2f_0} = \left(\frac{3\pi}{8}\right) R_{\text{opt}} \angle -90^\circ$$ \hspace{1cm} (11)

C. Proposed Architecture

![Fig. 3. Circuit architecture of the proposed CHT PA.](image)

Fig. 3 shows the schematic of the proposed 180 nm CMOS CHT PA. The PA’s quiescent current is 120 mA. As illustrated in Fig. 3, the inductor, L_1, and capacitors, C_1, C_2 and C_3 are the input impedance matching network. Meanwhile, the output impedance matching network comprises of L_3, C_6, C_7 and C_8. The capacitors, C_1 and C_8 act as the DC block for input and output stage. The inductor, L_2 is the RF choke for the PA and choke’s high-quality factor helps improve filtering functionality. Noise from the power supply to the RF path is decoupled by the capacitor, C_5, in which it improves the power-added efficiency (PAE) of the PA. Capacitor, C_4 and resistor, R_4 is a RC feedback circuit utilized to improve the stability of the PA.

The conversion mechanism of DC power supply into output signal deliverability to the load reflects the PA’s efficiency. This strictly influences the relationship between gain and output power as shown in (12):

$$\text{PAE} = \frac{G}{P_{\text{DC}}} \times 100\%$$ \hspace{1cm} (12)

where $G = P_{\text{out}} - P_{\text{in}}$, in which P_{out} and P_{in} refers to the output and input power respectively. G represents the gain of the PA.

III. SIMULATION RESULT

The proposed CMOS CHT PA is simulated at three different frequencies, which are 1.90 GHz (low frequency), 1.95 GHz (center frequency) and 2.10 GHz (high frequency) respectively. The s-parameters and stability K-factor are shown in Fig. 4. The small signal gain (S21) obtained is higher than 14 dB with input return loss (S11) of lower than -9 dB and output return loss (S22) of lower than -10 dB at all three frequencies aforementioned. The PA architecture is unconditionally stable up to 3 GHz which is replicated by the stability K-factor of more than 1.

![Fig. 4. S-parameter and stability factor performance of the proposed class-J PA.](image)

Fig. 4 depicts the power gain and PAE performance of the PA across the output power for different frequencies. The power gain achieved is higher than 14 dB, while a peak PAE of 40% is attained by the PA. A saturated output power of 24 dBm has been produced by the PA.

![Fig. 5. Power gain and PAE performance of the proposed class-J PA.](image)

The 3rd order output intercept point (OIP3) and the 3rd order intermodulation distortion (IMD3) achieved by the PA are depicted in Fig. 6. A maximum OIP3 of 33 dBm is achieved across the frequencies. The PA achieves an IMD3 of -33 dBc up to maximum output power of 18 dBm.
A 3.3V, 24dBm CHT Integrated CMOS 180nm Power Amplifier for NB-IoT Application

Fig. 6. OIP3 and IMD3 plot of the PA.

Table I: Performance summary of the designed PA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (GHz)</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>2.10</td>
</tr>
</tbody>
</table>

Table II: Designed CMOS PA comparison with recent published works.

<table>
<thead>
<tr>
<th>Ref</th>
<th>PA Tech (nm)</th>
<th>Max Linear Pout (dBm)</th>
<th>Peak PAE (%)</th>
<th>Gain (dB)</th>
<th>Freq (GHz)</th>
<th>Linearity</th>
<th>Supply (V)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14]</td>
<td>55</td>
<td>16</td>
<td>16</td>
<td>30</td>
<td>2.45</td>
<td>33 dBc (IMD3)</td>
<td>1.8</td>
<td>WLAN</td>
</tr>
<tr>
<td>[15]</td>
<td>180</td>
<td>16.5</td>
<td>36.6</td>
<td>22</td>
<td>0.6</td>
<td>N/A</td>
<td>1.8</td>
<td>IoT</td>
</tr>
<tr>
<td>[16]</td>
<td>180</td>
<td>15.9</td>
<td>29.71</td>
<td>19.6</td>
<td>2.5</td>
<td>21 dBm (OIP3)</td>
<td>1.8</td>
<td>IoT</td>
</tr>
<tr>
<td>This work</td>
<td>180</td>
<td>18</td>
<td>40.09</td>
<td>14</td>
<td>1.90 – 2.10</td>
<td>33.8 dBm (OIP3)</td>
<td>3.3</td>
<td>NB-IoT</td>
</tr>
</tbody>
</table>

Table 1 shows the performance summary results of the CMOS class-J PA simulated in three different frequencies from 1.90 GHz to 2.10 GHz, while Table 2 shows the performance comparison with recent published works.

IV. CONCLUSION

In this paper, a 180 nm CMOS CHT PA J is presented. The schematic level simulation of the PA across three frequencies achieves a saturated output power of 24 dBm with a peak PAE of 40%. The PA attained a power gain of 14 dB as well as peak OIP3 of 33 dBm. The resultant IMD3 achieved is -33 dBc at maximum linear output power of 18 dBm. The PA achieves a good efficiency with minimum trade-off between the linearity and output power.

ACKNOWLEDGMENT

This research project is jointly funded by CEDEC Universiti Sains Malaysia through the Grant RUI 1001/PECDEC/8014079 and Short-Term Grant 304/PECDEC/6315056.

REFERENCES

AUTHORS PROFILE

Arvind Singh Rawat, is currently research scholar at Collaborative Microelectronic Design Excellence Centre (CEDEC), University Sains Malaysia. He is working on CMOS analog IC design. He received his B.Tech degree in Instrumentation Engineering from USIC, HNB Garhwal University (Central Univeristy), Srinagar Garhwal, India, in 2009. He received his M. Tech (Hons) degree in VLSI Design from Faculty of Technology, Uttarakhadal Technical University, India in 2013. His research interests include VLSI, RF IC Design, Analog Integrated Circuit, Microelectronics.

Jagadheswaran Rajendran, (SM’16) is currently serving as a Senior lecturer at Collaborative Microelectronic Design Excellence Centre (CEDEC) and School of Electrical and Electronic Engineering, Universiti Sains Malaysia, working on CMOS analog IC Design, CMOS Radio Frequency (RF) IC Design and Monolithic Microwave Integrated Circuit (MMIC) Design. He received his B.Eng (Hons) from Universiti Sains Malaysia in 2004, M.Eng (Telecommunication) from Multimedia University in 2011 and Ph.D in the field of RFIC design from University of Malaya in 2015. He was with Laird Technologies as an Antenna Designer followed by serving Motorola Technology from 2005 to 2007 as R&D Engineer, working on mobile phone receiver system. In 2008, Dr Jaga joined BroadComm as MMIC designer, working mainly on GaAs based power amplifier, LNA and gain blocks, where he was elevated to the rank of Principal Engineer later. In 2015, he joined Silterra Malaysia, working on CMOS RFIC Design and device modelling. Till date, he has published more than 30 research papers, mainly journals and holds one US patent and one international patent. Dr Jagadheswaran was the recipient of the IEEE Circuit and System Outstanding Doctoral Dissertation Award in 2015. He served as the Chairman of IEEE ED /MTT/SSC Penang Chapter in year 2011 and 2018. He is also a senior member of IEEE.

Harikrishnan Ramiah, (M’10–SM’15) received his B.Eng. (Hons.), M.Sc., and Ph.D. degrees in electrical and electronic engineering, in the field of analog and digital IC design from Universiti Sains Malaysia in 2000, 2003, and 2008 respectively. He is currently an Associate Professor at Department of Electrical Engineering, University of Malaya, working in the area of RFIC design. He was with Intel Technology, Sdn. Bhd, attached in power gating solution of 45 nm process. In the year 2003, he was with SiresLabs Sdn. Bhd, CyberJaya, Malaysia, working on 10 Gbps SONET/SDH Transceiver solution. In 2002 he was attached to Intel Technology, Sdn. Bhd, performing high frequency signal integrity analysis for high speed digital data transmission and developing Matlab spread sheet for Eye diagram generation, to evaluate signal response for FCBGA and FCMMAP packages. He was the recipient of Intel Fellowship Grant Award, 2000–2008. He is a Chartered Engineer of the Institute of Electrical Technology (IET) and also a Professional Engineer registered under the Board of Engineers, Malaysia. He is a member of the Institute of Electronics, Information and Communication Engineers (IEICE). He is currently heading the Analog, Digital, and RF Research Group at University of Malaya. His research work has resulted in several technical publications. His main research interest includes analog integrated circuit design, RFIC Design, VLSI system design, and RF energy harvesting power management module design.

Sofiyah Sal Hamid, was born in Penang, Malaysia. She received her B. Eng. Degree with honors in Electronic Engineering in 2012, and MSc degree of Electronic Engineering in 2018 from Universiti Sains Malaysia (USM), Malaysia, respectively. In 2014, she joined Intel Microelectronic Malaysia as Analog RF Engineer. In 2015, she joined Collaborative Microelectronic Design Excellence Centre (CEDEC), USM as Research Officer in RF Analog IC Design. Her main research interest includes CMOS RF IC Design in Wireless and Mobile application.

Nuha A. Rhaflor, is currently working as Senior Research Officer at Collaborative Microelectronic Design Excellence Centre (CEDEC) at Universiti Sains Malaysia (USM) since 2010. She is working on CMOS Analog IC Design and mainly focus on readout circuitry for medical application. She received her B. Eng (Hons) in Electronic Engineering from Universiti Malaysia Perlis in 2010. She has conducted several trainings for young engineer and students in the field of Analog IC Design.