Particle Swarm Optimization Technique for Photovoltaic System

Md. Fahim Ansari, Padmanabh Thakur, Parvesh Saini

Abstract: Day by day the dependency on renewable energy uses has been increasing because of no greenhouse emission and abundant in nature available freely, this paper presents a comparative analysis of an optimization technique called Particle Swarm Optimization (PSO) along with Perturb & Observe (P&O) for the extraction of maximum power from the PV panel. The performances of P&O and PSO techniques were compared for different insolutions and temperatures. A detailed and rigorous mathematical model along with simulation results and its performance for maximum power extraction from the panel were analyzed by using P&O and PSO. It has been observed that the maximum power obtained from PSO model is more than the maximum power obtained from P&O for different insolutions and temperatures. Thus PSO is much better and more suitable for extracting maximum power from PV system.

Keywords: Particle Swarm Optimization, maximum power point tracker, buck boost Converter, Perturb & Observe

I. INTRODUCTION

The continuous use of fossil fuels has caused the fossil fuel deposit to be reduced and drastically affected the environment depleting the biosphere and cumulatively adding to global warming. As conventional remnant fuels are expected to come to an end in the near future, the world recent research increasing exponentially in renewable energy such as solar, wind, geothermal, biomass etc. [1]-[2]. Solar energy is being getting more popular because it is free of cost and has not any emission and also easily, most of the part of India got 300 sunny days [3]-[4]. Solar energy is a good choice for electric power generation, since the solar energy is directly converted into electrical energy by solar photovoltaic modules. The current capacity of solar PV system depends on its area exposed to the sun light and if area is more the current capacity is more and if area is less the current capacity is also less [5]. PV array is formed when PV modules are connected in series and parallel which is connected as per power requirement capacity [6]-[9]. In literature many optimization methods such as Perturb and observe, Incremental conductance: Fractional open circuit voltage: Fractional open circuit voltage: Artificial intelligent techniques: Fuzzy Logic Controller, has been discussed. Particle Swarm Optimization [10] is an approach to optimize the solar MPPT. The PSO algorithm is used to minimize the cost of the generated energy for the matching of electricity supply and local demand [11].

II. MATHEMATICAL MODEL OF SOLAR CELL

The equivalent circuit of solar cell has been discussed in this section which is a current source connected across a diode, shunt resistance (Rsh) and series resistance (Rs). The equivalent circuit is shown in fig 1.

![Fig.1. Equivalent circuit of Solar Cell](Image)

Where, Rs = series resistance, it is the resistance offered by bulk material to flow of electrons and the resistance between the bulk material and the metal contact and it is in series with load resistance. Rsh = shunt resistance, it is the resistance caused by recombination process inside the PV cell.

Diode current is given by

\[I_D = I_o \left(\frac{qV_D}{eRT} - 1 \right) \]

(1)

Relationship between \(V_L \) and \(I_L \) seen from the load (neglecting shunt resistance) is given as follows

\[I_{ph} - I_D = I_L \]

(2)

\[I_{ph} - I_D \left(e^{\frac{qV_D}{kT}} - 1 \right) = I_L \]

(3)
Put \(V_D = V_L + R_s I_L \) in equation (iii)
\[
I_{ph} - I_o = e^{\frac{V_D}{RT}} - 1 = I_L
\] (4)

Rearranging and taking log on both sides, we get
\[
\ln\left(\frac{I_{ph} - I_L}{I_o} + 1\right) = \frac{q(V_o + R_s I_L)}{RT}
\] (5)

Again rearranging, we get
\[
V_L = \frac{RT}{q} \ln\left(\frac{I_{ph} - I_L}{I_o} + 1\right) - R_s I_L
\] (6)

Open circuit voltage or Maximum Voltage \((I_L=0) \) is given by
\[
V_{L,max} = \frac{RT}{q} \ln\left(\frac{I_{ph}}{I_o} + 1\right)
\] (7)

Relation between \(V_L \) and \(I_L \) seen from load (considering shunt resistance) is given as follows
\[
I_{ph} - I_o = I_L
\] (8)
\[
I_{ph} - I_o\left(e^{\frac{V_D}{RT}} - 1\right) = I_L
\] (9)

Put \(V_D = V_L + R_s I_L \) in equation (9)
\[
I_{ph} - I_o\left(e^{\frac{V_L + R_s I_L}{RT}} - 1\right) = \frac{(V_L + R_s I_L)}{R_{sh}} = I_L
\] (10)

Where
- \(I_{ph} \) = \(I_{SC} \) = Photon Current/ Short Circuit Current
- \(I_o \) = Reverse Saturation Current
- \(I_D \) = Diode Current
- \(I_L = I_S \) = Load Current/Series Current
- \(V_D \) = Diode Voltage
- \(V_L \) = Load Voltage
- \(V_{L,max} \) = Maximum Voltage/ Open Circuit Voltage
- \(R_s \) = Series Resistance
- \(R_{sh} \) = Shunt Resistance
- \(q \) = Electron Charge
- \(K \) = Boltzmann’s Constant
- \(T \) = Absolute Temperature
- \(\Upsilon \) = Cascading Constant (value lies between 1 to 3)

III. SYSTEM DESIGN IN MATLAB

In both models PSO and P&O, three blocks such as PV panel, MPPT block and Buck-boost converter were considered and are shown in Figure 2 and Figure 3.

![Fig. 2. Simulation Diagram of P & O MPPT Model](image)

![Fig. 3. Simulation Diagram of PSO MPPT Model](image)

IV. RESULT ANALYSIS OF PSO WITH P&O METHOD

The comparative results between PSO and P & O MPPT technique applied of photovoltaic system has been given from figure 4 to figure 11. Maximum output power is extracted from the PV panel for different insolation and temperature using P&O and PSO MPPT techniques.

The present work compares the results obtained from PSO and P&O MPPT model for different insolation and temperature. Results for the above models are shown below from figure 4 to figure 11 considering temperature variations from 25°C to 50°C and insolation variation from 1000 W/m² to 1500 W/m². In all the cases it has been observed that the response using PSO method is far better that using P&O techniques. Result analysis is also presented in the form of table 1 to table 4. The error is depicted in the table using PSO and P&O techniques.

![Fig. 4. Output power curve of PSO model at constant isolation 1000W/m² and varying temperature up to 25°C](image)
Fig. 5. Output power curve of P&O model at constant isolation 1000W/m² and varying temperature up to 25°C

Table-1: Results of PSO and P&O models constant isolation 1000W/m² and varying temperature up to 25°C

<table>
<thead>
<tr>
<th>Technique used</th>
<th>Pmpp(Calculated)</th>
<th>Pmpp(actual)</th>
<th>Error</th>
<th>Duty cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>4.18e04 W</td>
<td>4.2e04 W</td>
<td>0.004</td>
<td>0.65</td>
</tr>
<tr>
<td>P & O</td>
<td>2.66e04 W</td>
<td>4.2e04 W</td>
<td>0.36</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Fig. 6. Output power curve of PSO model at constant isolation 1000W/m² and varying temperature up to 50°C

Fig. 7. Output power curve of P & O model at constant isolation 1000W/m² and varying temperature up to 50°C

Table-2: Results of PSO and P&O models at constant isolation 1000W/m² and varying temperature up to 50°C

<table>
<thead>
<tr>
<th>Technique used</th>
<th>Pmpp(Calculated)</th>
<th>Pmpp(actual)</th>
<th>Error</th>
<th>Duty cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>3.62e04 W</td>
<td>3.81e04 W</td>
<td>0.049</td>
<td>0.65</td>
</tr>
<tr>
<td>P & O</td>
<td>2.29e04 W</td>
<td>3.81e04 W</td>
<td>0.39</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Fig. 8. Output power curve of PSO model at constant temperature 25°C and varying isolation up to 1000 W/m²

Fig. 9. Output power curve of P & O model at constant temperature 25°C and varying isolation up to 1000 W/m²

Fig. 10. Output power curve of PSO model for constant temperature 50°C and varying isolation up to 1000 W/m²

Table-3: Results of PSO and P&O models at constant temperature 25°C and varying isolation up to 1000 W/m²

<table>
<thead>
<tr>
<th>Technique used</th>
<th>Pmpp(Calculated)</th>
<th>Pmpp(actual)</th>
<th>Error</th>
<th>Duty cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>4.916e04 W</td>
<td>5.21e04 W</td>
<td>0.057</td>
<td>0.687</td>
</tr>
<tr>
<td>P & O</td>
<td>3.233e04 W</td>
<td>5.21e04 W</td>
<td>0.37</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Particle Swarm Optimization Technique for Photovoltaic System

In this work MATLAB Simulink has been used and compared the performance of their results for P&O, PSO for different temperature and isolation. After going through the results it can be concluded (table-4) that output power obtained from PSO model is much higher than the power obtained from P&O model for different insolation and temperature. Therefore, PSO MPPT technique is much better than P&O MPPT technique.

V. CONCLUSION

P&O and PSO MPPT techniques were reviewed. The performances of P & O and PSO techniques were compared for different insolation and temperature. After running simulation of both MPPT models, it has been found that the maximum power obtained from PSO model is more than the maximum power obtained from P&O for different insolation and temperature. Thus it can be concluded that PSO is much better and more suitable for extracting maximum power from PV system.

REFERENCES

Table- 4: Results of PSO and P&O models at constant temperature 50°C and varying isolation up to1000 W/m²

<table>
<thead>
<tr>
<th>Technique Used</th>
<th>Pmp(Calculated)</th>
<th>Pmp(actual)</th>
<th>Error</th>
<th>Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>5.808e04 W</td>
<td>6.001e04 W</td>
<td>0.032</td>
<td>0.687</td>
</tr>
<tr>
<td>P & O</td>
<td>4.151e04 W</td>
<td>6.001e04 W</td>
<td>0.308</td>
<td>0.37</td>
</tr>
</tbody>
</table>

AUTHORS PROFILE

Dr Md Fahim Ansari, presently working as professor in Graphic Era Deemed to be University Dehradun, He did B.Tech from MIT, M.Tech From AMU Aligarh and PhD from NITTTR Chandigarh. He has published more than 22 papers in SCI/Scopus Journals and conferences. He has also works as Professor in Buraidah Engineering College Saudi Arabia.He is reviewer of Elsevier, IEEE journals

Padmanabh Thakur, presently working as Professor and Head, Electrical Engineering Department, Graphic era Deemed to be University Dehradun. He received the Bachelor of Tech. in Electrical Engineering from MIT, Muzafferpur (Bihar) in 1997. Masters of Technology in Electrical Engineering from RVDU, Udaipur, and the Ph.D. in Electrical Engineering from MNMIT, Allahabad, India, in 2014.He is an eminent researcher and has numerous research publications published in various journals and conferences of repute.

Parvesh Saini, presently working as Assistant Professor in Electrical Engineering Department, Graphic era Deemed to be University Dehradun. He received the Bachelor of Tech. in Instrumentation and Control Engineering from Kurukshetra University, Kurukshetra (Harayna) in 2004. Masters of Technology in Instrumentation and Control Engineering from Panjab University, Chandigarh in 2008, and pursuing Ph.D. in Control Engineering from Graphic Era deemed to be University, Dehradun. He has numerous research publications published in various journals and conferences of repute.