Automatic Spray Painting Robot using Regression Method

Swetha Danthala, Seeram Srinivasa Rao

Abstract: The main of the paper is to take up parametric optimization for an automatic spray painting robot which helps to reduce operational cost and time. The painting chemicals can cause hazards to the painters such as eye and respiratory system problems. When construction workers the robot is properly used in buildings and whole construction process can be better manage to savings the human labor and timing by applying the machine learning techniques we find out the surface roughness thickness variation, film adhesion.

Keywords: Robotics, Construction, spray painting, safety

I. INTRODUCTION

At present spray painting is extensively used in many fields such as automobiles, home appliances etc. One of the oldest applications of industrial robots is spray painting preferred for their quality output cost effectiveness. Mohammed [1] In his work described spray painting robot which consists of an arm that scans the wall vertically and fitted to the robot base to give lateral feed motion to cover the painting area.

Pkeerthana et al. [2] designed a wall painting robot using conveyor belt, shaft, spray gun and controller unit. Due to the less number of moving parts it gave expected performance.

Fengyu Xu et al. [3] have given wall climbing robot design with claws. Jizhong Xiao et al[4] worked on wall climbing robot with load carrying capacity. Robotic spray painting [5] thickness is measured in [µm] by considering different spray painting parameters like paint flow, viscosity, gravity surface tension easily deposition of paint quality measured values. The quality of the paint is measured in terms of surface roughness, thickness variation, and film adhesion. Various robotic applications are discussed in [6-13] for mechanical engineering requires design parameters for optimizing the robot automation. Various optimizing techniques[14-19] can be used depending on the input parameter behavior.

II. EXPERIMENTAL SETUP & PROCEDURE

R Balamurugan, & S. Prabhu [20] experimented on IRB 1410 robot with a specially designed end effectors with spray gun. The payload capacity of the manipulator is 5kg and reaches 1.45 m and is control by IRC5 controller. For this experiment a gravity feed HVLP Spray gun is used which has an improved atomization capability for maximum transfer efficiency HVLP spray gun with pressure pot and separate paint tank initial as well as the changing of paint type.

Here 3 factors 3 levels available of DOF is 6. The above array table consists of 3 columns and 9 rows so taguchi L9 allows conducting only 9 experiments to investigate the control variables to cover the area of surface to be painted.

Revised Manuscript Received on January 10, 2020.

* Correspondence Author

Swetha Danthala*, Research Scholar, Department of Mechanical Engineering, KL Deemed to be University, Vaddeswaram (A.P.) India.

Seeram Srinivasa Rao, Professor, Department of Mechanical Engineering, KL Deemed to be University, Vaddeswaram (A.P.) India.
The control factors used by [20] are shown in Table I, L9 orthogonal array is shown in Table II and Table III shows results obtained by the experimentation [20]

The variation of thickness, surface roughness and film adhesion with respect to different parameters such as distance, pressure, speed have been shown in the figures. The figure 1 shows the thickness variation of the paint with respect to the distance of the spray paint gun from the object to be painted. From the figure 1 it is understood that the change in the thickness variation is more, when the paint gun distance has changed from 125mm to 150mm.

The figure 4 shows the surface roughness of the paint with respect to the distance of the spray paint gun from the object to be painted. From the figure 4 it is understood that the surface roughness is decreased as the distance increases.

The figure 7 shows the film adhesiveness with respect to the distance of the spray paint gun from the object to be painted. From the figure 7 it is understood that the film adhesiveness is decreased as the distance increases.
The regression model for the surface roughness with respect to the variables distance, pressure, and speed is given by:

\[C_5 = -0.0686 \times \text{Distance} + 0.000560 \times \text{Pressure} + 0.0933 \times \text{Speed} + 0.000433 \times \text{Speed} \]

Where \(C_5 \) represents surface roughness and fig 11 shows the residual plots for the regression analysis of surface roughness.

The regression model for the Film Adhesion with respect to the variables distance, pressure, and speed is given by:

\[C_6 = 87.08 + 0.0387 \times \text{Distance} + 2.00 \times \text{Pressure} + 0.0156 \times \text{Speed} \]

Where \(C_6 \) represents Film adhesion and fig 12 shows the residual plots for the regression analysis of surface roughness.

The regression models are obtained for three observations separately. The best fit occurs for the three observations occurs at distance (150 mm), pressure (2.5 bar), speed (90 mm/sec).

III. CONCLUSION

This paper analyzed the characteristics of an automated spray painting using Taguchi with the HVLP GUN which reduces the cost. The most influencing factors distance (150 mm), pressure (2.5 bar), speed (90 mm/sec) were explored and achieved by regression model.
Automatic Spray Painting Robot using Regression Method

REFERENCES

