Epq Incentive Model for Manufacture - Buyer with Floor Space and Inventory Level Constraints

M. Haj Meeral, M. K. Vediappan, P. Muniappan, G. Rasitha Banu

Abstract: This paper researches maker and purchaser creation model for deteriorating items with floor space and stock level imperative. Lagrange's multiplier procedure is utilized to take care of this sort of issue. Coordinated framework cost is created for equivalent advantages of both purchaser and producer. So as to decrease the complete stock cost, ideal request amount is resolved and furthermore floor space and stock level requirement ought to be fulfilled. Numerical model is likewise giving to reveals the model.

Keywords: Production, Inventory, Order quantity, Constraints.

I. INTRODUCTION

In the greater part of the enterprises, request is questionable and hard to conjecture. Thus Ordering in right amounts at opportune time is constantly a pivotal issue. In this examination the creators present a model for deciding the requesting strategy which will limit the all out stock expense. The financial creation amount is a notable and generally utilized stock control system. The flawed quality and deficient things are either to be adjusted momentarily and kept in stock or dismissed at an expense.

II. ASSUMPTIONS AND NOTATIONS

The model use the following notations and assumptions

Notations

D Demand rate
P Production rate
R
Ordering cost for buyer
R
Setup cost for manufacturer
p Purchase cost for buyer
Q Economic Order quantity
H
Holding cost for buyer
H
Holding cost for manufacturer
S
Screening cost for manufacturer
M Manufacturer multiples of order
K Buyer’s multiples of order
d(k) Discount factor
F Space involved per item
X Total accessible storage space
W Maximum available stock

Assumptions

(i) Demand rate is constant.
(ii) Manufacturer delivered the item and purchaser has no shortage and furthermore manufacturer gives the quantity discount to the purchaser.
(iii) The lot size Q doesn't surpasses the warehouse capacity and accessible inventory level.
(iv) Mathematically, the constraints will be written as

\[FQ \leq X \quad \text{and} \quad \frac{Q}{2} \leq W \]

III. MODEL FORMULATION

The total buyer cost have ordering cost, holding cost and screening cost and manufacturer have setup

Revised Manuscript Received on December 5, 2019.

M. Haj Meeral, Assistant Professor, Department of Mathematics, the
Quade Milleth College for Men, Chennai – 600100, Tamil Nadu, India.

M. K. Vediappan, Assistant Professor, Department of Mathematics, Vels
Institute of Science, Technology and Advanced Studies, Chennai – 600117, Tamil Nadu, India.

P. Muniappan, Assistant Professor, Department of Mathematics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, India.

G. Rasitha Banu, Assistant Professor, Department of Health Informatics, FPHTM, Jazan University, KSA.

* Corresponding author: mail: mkvediappan@gmail.com

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019

87

DOI:10.35940/ijrte.D1031.1284S519
cost, holding cost, discount factor for buyer. Additionally manufacturer creates the item and gives the quantity discount to the purchaser.

The total cost for buyer and manufacturer will be written as

\[T_{cb} = \frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \left(\frac{\text{km}Q}{h} + \frac{k_nQ}{h} \right) + pD \alpha(k) \]

\[T_{cm} = \frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \left(\frac{\text{km}Q}{h} + \frac{k_nQ}{h} \right) (1 - \frac{D}{p}) + pD \alpha(k) \]

Integrated system cost can be written as

\[T_C = T_{cb} + T_{cm} \]

\[T_C = \frac{1}{Q} \left(\frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \right) + \frac{\text{Q}}{2} \left(\frac{h_b + s_c}{2} + \frac{\text{km}Q}{h} \right) (1 - \frac{D}{p}) + pD \alpha(k) \]

(1)

subject to \(FQ \leq X \)

Here, we consider the warehouse capacity constraint and inventory level constraint. Now, Lagrange multiplier functions \(\alpha \) and \(\lambda \) is added on integrated system cost and it can be written as follows:

\[T_C = \frac{1}{Q} \left(\frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \right) + \frac{\text{Q}}{2} \left(\frac{h_b + s_c}{2} + \frac{\text{km}Q}{h} \right) (1 - \frac{D}{p}) + pD \alpha(k) + \alpha \left(FQ - X \right) + \lambda \left(\frac{Q}{2} - W \right) \]

(2)

Equation (2) can be written as:

\[T_C = \left(H_b + s_c + \frac{\text{km}Q}{h} (1 - \frac{D}{p}) + 2\alpha F + \lambda \right) Q + \left(\frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \right) \frac{Q}{2} + pD \alpha(k) - \alpha X - \lambda W \]

(3)

It is of the form \(\alpha_2 Q + \frac{\alpha_3}{Q} + \alpha_2 \)

Q will be taken as, \(Q = \frac{\alpha_3}{\alpha_2} \)

Now \(Q^* \) is:

\[Q^* = \sqrt{\frac{2 \left(\frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \right)}{h_b + s_c + \frac{\text{km}Q}{h} (1 - \frac{D}{p}) + 2\alpha F + \lambda}} \]

(4)

where:

\[\alpha = \frac{z^2 \left(\frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \right) - X \left(h_b + s_c + \frac{\text{km}Q}{h} (1 - \frac{D}{p}) + 2\alpha F + \lambda \right)}{2\mu^2} \]

\[\lambda = \frac{2\mu^2}{z^2} \left(\frac{\text{DR}_b}{2} + \frac{\text{DR}_c}{2} \right) - X \left(h_b + s_c + \frac{\text{km}Q}{h} (1 - \frac{D}{p}) + 2\alpha F \right) \]

(5)

(6)

IV. NUMERICAL EXAMPLE

1. Let \(R_1 = 300, R_2 = 900, D = 1000, P = 2000, H_e = 0.05, H_b = 0.03, s_c = 0.3, p = 0.5, m = 4, k = 3, d(k) = 30\% \), \(X = 4000, W = 800 \), \(\alpha = 0.3, \lambda = 0.2, F = 2 \).

The optimal solutions are

\[Q^* = 1600, T_{C_b} = 451.50, T_{C_m} = 436.88 \]

\[T_C = 1.0169 \times 10^3 \text{ satisfies the constraints } FQ \leq 4000 \text{ and } Q \leq 800 \]

2. Let \(R_1 = 200, R_2 = 1000, D = 1200, P = 2000, H_e = 0.04, H_b = 0.02, s_c = 0.4, p = 0.6, m = 4, k = 3, d(k) = 40\% \), \(X = 3000, W = 600 \), \(\alpha = 0.3, \lambda = 0.2, F = 2 \).

The optimal solutions are

\[Q^* = 1200, T_{C_b} = 452, T_{C_m} = 486.53 \]

\[T_C = 1.0150 \times 10^3 \text{ satisfies the constraints } FQ \leq 3000 \text{ and } Q \leq 600 \]

V. CONCLUSION

In this exploration an EPQ stock model is produced for organizing production network for purchaser maker incorporated framework. Maker makes the thing and gives the amount rebate to the buyer. Besides, the model fulfills both floor space and stock level constraints. A numerical model is figured under this circumstances and Lagrangian multiplier strategy is utilized to tackle this sort of issues. For future research, models can be created by considering the components like price discount policy, onetime discount, trade credit and so on.,

REFERENCES

