Phytochemical Screening and Pharmacological Examination of Persia Americana Mill (Avocado) Crude Seed Extracts

Gangadhara Angajala, Valmiki Aruna, Radhakrishnan Subashini, Geetha Das, Ramanathan Rajajeyaganthan

Abstract: In the present study crude seed extracts of Persia Americana Mill (Avocado) was prepared using petroleum ether, methanol, ethyl acetate and aqueous solvents. The phytochemical screening of different crude extracts were studied for the presence of alkaloids, carbohydrates, protein, phenols, tannins, saponin, triterpenoids, glycosides, phytosteres, gums and mucilage. The crude seed extracts were pharmacologically evaluated for its antiinflammatory efficacy. The results obtained clearly demonstrated that out of the screened crude extracts, petroleum ether extract possess better pharmacological activities. From the GC-MS and FTIR analysis of petroleum ether extract 5 major compounds were identified and considered to play a key role in the overall pharmacological efficacy of avocado seed extract.

Keywords: Persea Americana Mill, Avocado, Antiinflammatory.

I. INTRODUCTION

Plants have been part of our lives since the beginning of time and in recent years natural products has gained attention in the field of medicine [1-3]. Plants play a vital role in humans as they possess several active constituents which are the precursors for the synthesis of many drugs [4-8]. The practices and philosophy of various traditional medicine systems are highly influenced by the geographical area, environmental factors and their associated prevailing conditions [9-11]. Medicinal plants form the main support of traditional system of medicine all over the world mainly by the utilization of numerous plants and plant derived products to care and relief from various physical and mental illness [12-14]. The importance of traditional medicine and its utilization is increasing dramatically all over the world because it is more affordable and easily allows maximum public access to health information [15-16]. Phytomedicines are also important for drug discovery and development especially as starting materials in the synthesis of pharmacologically active drugs [17-18].

Fig.1. Various pharmacological activities of Persea americana Mill

Persia Americana Mill (Avocado) is generally distributed nearly in almost all parts of the tropical and subtropical regions with suitable environmental conditions [20]. It belongs to the family lauraceae and commonly known as alligator pear, reflecting its shape and leather like appearance of the skin. Avocado is the most nutritious among all seeds and is regarded as the most important contribution of the new world to human diet. Avocado possess many pharmacological activities and generally used for the treatment of various diseases [21] [Fig.1]. Avocado is considered as an evergreen plant although some varieties lose their leaves before flowering for short period of time. In the present work crude seed extracts of avocado were isolated using petroleum ether, methanol, ethyl acetate and aqueous solvents. The extracted crude isolates were evaluated for its antiinflammatory efficacy.

II. MATERIALS AND METHODS

A. Collection of plant material

The Avocado seeds were collected from Sholinghur area (12.9275° N, 79.3302° E) Vellore district, Tamil Nadu, India.
B. Extraction and isolation
Fresh seeds of Avocado were taken and thoroughly washed by using distilled water. The seeds were finely powdered after drying in a shade region for six days. A weighed quantity of powdered drug (100 g) was taken and packed in a Soxhlet extractor using different solvents (petroleum ether, methanol, ethyl acetate and aqueous solvents) extracts were prepared accordingly.

C. Phytochemical screening
Phytochemical screening were carried out for different seed extracts of avocado as per the standard methods [22-23].

D. In-vitro antiinflammatory studies
In the present work in-vitro anti-inflammatory studies were carried out by two methods as per the reported method [24-25].

- Membrane stabilization activity
- Proteinase inhibitory activity

RBCs membrane was studied as it was closely similar to lysosomal membrane. At the location of inflammation the release of lysosomal content is inhibited because of the heat induced hemolysis. The extracellular release of neutrophil lysosomal constituents which include protease and bacterial enzymes can further initiates tissue damage which leads to inflammation. Proteinase has been associated in arthritic reaction. Lysosomal granules of the neutrophils possess many serine proteinases which play a prominent role in the progression of several inflammatory reactions through tissue damage. Therefore by employing proteinase substantial level of protection was provided by proteinase inhibitors during inflammatory processes.

III. RESULTS AND DISCUSSION

A. Phytochemical Screening
The phytochemical test results of different avocado seed extracts are shown in Table-I. Proteins, carbohydrates and phytosterols are present in all the four seed extracts. Ethyl acetate extract of avocado seed contain flavonoids, glycosides and saponins. Terpenoids are commonly present in methanol and petroleum ether extracts whereas alkanes are present in petroleum ether extract. Terpenoids and alkanes furnish to analgesic and anti-inflammatory activities. Aqueous extract contains tannins, flavonoids and saponins. Terpenoids and saponins function as regulators of mechanism and play a protective role as an antioxidant. They are able to form a hydro-peroxide intermediate, thus preventing cell damages by free radicals.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Phytochemical constituents</th>
<th>Pet ether extract</th>
<th>Methanol extract</th>
<th>Ethyl acetate extract</th>
<th>Aqueous extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Proteins and free amino acids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

(+) indicates the presence of Chemical Constituents
(-) indicates the absence of Chemical Constituents

B. Pharmacological evaluation
The pharmacological screening of crude extracts of avocado shows good antiinflammatory activity. The results obtained from antiinflammatory activity clearly showed that out of the screened crude extracts, petroleum ether extract possess better efficacy with percentage inhibition of 41.20 ± 0.05 and 82.13 ± 0.06 towards membrane stabilization and proteinase inhibitory activity at a concentration of 100 µg/mL which was comparable to that of standard etodolac (68.18 ± 1.66 and 74.06 ± 0.07). The aqueous crude extract of avocado showed moderate antiinflammatory efficacy with percentage inhibition of 38.71 ± 0.07 and 66.28 ± 0.09 respectively (Table-II).

C. GC-MS Analysis of Petroleum Ether Crude Seed Extract
Table-III shows the constituents of petroleum ether seed extract of avocado. A total of 5 compounds were identified from GC-MS analysis representing 79.70% of total composition of seed extract (Fig. 2). The major compounds identified by comparing with the library include 1-hydroxy heneicosa-2,12,15-trien-4-one, 1 (34.18 %), 2-hydroxy -4-oxo henei-cosa-5, 12-dien-1-y1 acetate, 2 (26.82 %) 1,2,4-trihydroxy nonadecane, 3 (14.79 %), 1-hydroxy heneicosa-2,5,12,15 -tetraen-4-one, 4 (8.62 %) and 1,2,4-trihydroxy heptadec - 16-ene, 5 (5.29 %). The percentage composition of the remaining compounds ranged from 0.54 % to 1.46 % (Fig. 3-8). These compounds were found to be majorly contributing for bioefficacy of the petroleum ether粗seed extract.

Retrieval Number: D11611284S219/2019©BEIESP
DOI: 10.35940/ijrte.D1161.1284S219

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

501
Table-II: Percentage inhibition for membrane stabilizing and proteinase inhibitory activity of Avocado seed extracts

<table>
<thead>
<tr>
<th>S.No</th>
<th>Conc.(µg/mL)</th>
<th>Aqueous</th>
<th>Petroleum</th>
<th>Methanol</th>
<th>Ethyl acetate</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>0.16</td>
<td>0.21</td>
<td>0.21</td>
<td>± 0.92</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.1</td>
<td></td>
<td>23.76</td>
<td>± 0.03</td>
<td>25.2</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.28</td>
<td>0.43</td>
<td>1.47</td>
<td>± 1.01</td>
<td>3 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ± 0.43</td>
<td></td>
<td>39.61</td>
<td>± 0.19</td>
<td>29.0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>0.07</td>
<td>0 ± 0.36</td>
<td>0.36</td>
<td>± 0.08</td>
<td>6 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
<td>33.26</td>
<td>± 0.19</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Percentage inhibition of proteinase inhibitory studies

<table>
<thead>
<tr>
<th>S.No</th>
<th>Conc.(µg/mL)</th>
<th>Aqueous</th>
<th>Petroleum</th>
<th>Methanol</th>
<th>Ethyl acetate</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>0.11</td>
<td>2 ± 0.04</td>
<td>2 ± 1.01</td>
<td>± 0.08</td>
<td>1 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15</td>
<td></td>
<td>1.71</td>
<td>± 0.08</td>
<td>0.65</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>1.32</td>
<td>2 ± 1.15</td>
<td>48.16</td>
<td>± 0.08</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.02</td>
<td></td>
<td>25.01</td>
<td>± 0.08</td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54.2</td>
<td></td>
<td>25.01</td>
<td>± 0.08</td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.32</td>
<td></td>
<td>2 ± 1.15</td>
<td>± 0.08</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.05</td>
<td></td>
<td>1.71</td>
<td>± 0.08</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Fig.3. GC-MS showing various retention times of the petroleum ether crude extract

Fig.4. GC-MS spectrum of 1-hydroxy heneicosa-2,12,15-trien-4-one

Fig.5. GC-MS spectrum of 2-hydroxy-4-oxo heneicosa-5,12-dien-1-yI acetate

Fig.6. GC-MS spectrum of 1-hydroxy heneicosa-2,5,12,15-tetraen-4-one

Fig.7. GC-MS spectrum of 1,2,4-trihydroxynonadecane
So in the present work phytochemical and pharmacological screening of the crude avocado seed extracts were carried out and the potent molecules responsible for the better activity of petroleum ether crude extract were identified successfully through GC-MS. In future research has to be carried out in order to isolate the active components from crude extracts through column chromatography and thus comparative studies towards pharmacological activities will be done.

ACKNOWLEDGEMENTS

The authors sincerely thank the management of Kalasalingam Academy of Research and Education, Tamil Nadu, India for their constant encouragement and support and providing all the necessary facilities for carrying out this research work. The authors are grateful to Arulmighu Kalasalingam College of Pharmacy, Krishnankoil for providing necessary facilities and co-operation during this research work.

REFERENCES


AUTHORS PROFILE

Gangadhara Angajala is working as an Assistant professor in Department of Chemistry at Kalasalingam Academy of Research and Education. He completed his undergraduate-graduation in B.Sc with triple major at Government Degree College for Men, Anantapur, Andhra Pradesh and his graduation with specialization in Pharmaceutical Chemistry at Vellore Institute of Technology, Tamil nadu. He obtained his Ph.D with specialization in Organic and Medicinal Chemistry from VIT University. His research area includes synthesis of new quinoline scaffolds with hypoglycemic efficacy by using nanocatalysis.

Valmiki Aruna has completed her under-graduation in B.Sc with triple major at Government Degree College for Men, Anantapur, Andhra Pradesh and currently pursuing her M.Sc Chemistry at Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India.

Radhakrishnan Subashini has completed her Ph.D at VIT University, Vellore in 2011. She has done M.Phil at KMCGPS, Pondicherry University, Pondicherry and M.Sc at Annamalai University, Chidambaram. She is currently working as an Assistant Professor at Arignar Anna Government Arts College for Women, Walajapet, Tamilnadu, India.

D.Geetha has completed M. Sc in Chemistry discipline from Bharathidasan University, M. Phil., from Annamalai University. She completed Ph. D from Jaypee University in 2016. She is currently working as an Assistant professor at Kalasalingam Academy of Research and Education from 2017 onwards. Her field of interest is bio surfactant. She has published 7 papers in reputed international journals.

Rajajeyagantha Ramanathan completed his B.Sc., Applied Sciences from Coimbatore Institute of Technology, Coimbatore and M.Sc., Applied Chemistry from National Institute of Technology, Tiruchirappalli. He was awarded “Best Outgoing Student” with a gold medal in M.Sc. He completed his Ph.D (Surface Science) under TWAS-CNpq fellowship from Federal University of Rio Grande do Sul, RS, Brazil.