
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S2, December 2019

 DOI: 10.35940/ijrte.D1130.1284S219

Retrieval Number: D11301284S219//2019©BEIESP

Published By:Blue Eyes Intelligence
Engineering & Sciences Publication

Mining Severe Priority Bugs in Software Maintenance

1Satish C J, 2Thendral Puyalnithi

1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore
2Kalasalingam Academy of Research and Education, Krishnankoil

ABSTRACT

Maintenance of open source software is a hectic task as

the number of bugs reported is huge. The number of

projects, components and versions in an open source

project also contribute to the number of bugs that are

being reported. Classification of bugs based on priority

and identification of the suitable engineers for assignment

of bugs for such huge systems still remains a major

challenge. Bugs that are misclassified or assigned to
engineers who don’t have the component expertise,

drastically affect the time taken towards bug resolution.

In this paper we have explored the usage of data mining

techniques on the classification of bugs and assignment of

bugs to engineers.Our focus was on classifying bugs as

either severe or non-severe and identification of engineers

who have the right expertise to fix the bugs. The

prediction of bug severity and identification of engineers

were done by mining bug reports from JIRA, an open

source software bug tracking tool. The mining process

yielded positive results and will be a decision enhancer

for severe bugs in the maintenance phase.

Keywords: Mining Software Repository, Data Mining,

Software Maintenance

1. INTRODUCTION

A software system undergoes lot of changes

during the software maintenance phase. The

changes can be either change requests or bugs.

Bugs are usually classified as severe, high,

medium or low priority bugs. The priority

denotes the severity of the bug and its impact on

the business. Severe bugs are those which act as

a blocker to the system execution and they need

an emergency fix. All bugs that are reported

should be fixed by the maintenance engineers

within a given time period as mentioned in a

Service Level Agreement.

Bug tracking systems are used for managing

bugs. Whenever a system user identifies a bug,

the user reports the bug using the bug tracking

system.Based on the severity of the bug the user

assigns a priority to the bug. Bugs that are

reported are later assigned to maintenance

engineers by project managers who manage the

project.

Most often the users who report the bug report a

bug as a severe bug when it’s actually a

medium or low priority bug. If a reported severe

priority bug is found to be of a lower priority

upon analysis, the maintenance engineers can

downgrade the priority of the bug after

informing the user who reported the bug. The

problem with this approach is that engineers

spend time analyzing a low priority bug as a

severe bug and this hampers the fixing of actual

severe bugs.

Another important problem with respect to bug

fixing is identifying the right person who can

fix a bug. Most often the assignment of bugs to

engineers is done based on the workload of each

engineer. As severe bugs need an immediate

fix, only engineers who have a good experience

in handling such bugs can provide a quick

resolution. Assignment of severe bugs to

engineers who don’t have the right experience

levels can lead to poor fixes or reassignment of

bugs[1]. A delay in fixing a severe priority bug

has a very high level of impact on the business

and can decrease customer satisfaction[2][3].

Bug classification and assignment has been

addressed by researchers in the

past[3][4][5].Such studies considered all bugs to

be of equal importance and were not focused on

mining severe bugs. Our approach deals with

addressing these issues on severe priority bugs

by mining bug reports. We have provided

mining as an approach for classification of bugs

as either severe or non-severe. Such a

classification of reported bugs can prevent

assignment of low priority bugs as severe

priority. Identification of the best person to

assign a severe bug is also achieved by mining

the past history on bug fixes.

2. Mining Process

We have used bug reports on QT which is open

source software. Bug management for QT is

done using JIRA, a bug

 2

tracking tool developed by Australian Company

Atlassian [6].The important steps in our mining

process are given below

 Extraction of Bug Reports from JIRA

 Import of Bug Reports in SQL Server

Database

 Preprocessing Bug Reports

 Creation of Mining Models using SQL

Server Analysis Services.

The bugs were either classified as severe or

non-severe. We have also identified the

assignees that are best suitable for both severe

and non-severe bugs.

Bugs that are classified as severe will be

assigned to assignees that have been identified

for fixing severe bugs using our mining method.

This approach enables the handling of severe

bugs effectively without any delay by utilizing

the best person to fix the bug. This will reduce

the downtime of the system and improve

customer satisfaction on the supported business.

2.1 Extraction of Bug Reports from JIRA

The bug reports were extracted from bug

tracking tool JIRA as Excel Files.As Jira was

configured to allow only downloads of thousand

bugs per report, there was a need to download

many reports. Our approach was to download

bug reports for every month, as the number of

bugs reported for every month was lesser than

thousand. Reports for the last five years were

extracted

as excel files from JIRAtool. Using an excel

macro to merge files; the individual reports

were merged as one single excel file. The

merged report had 43840 rows and 71 columns.

2.2 Import of Bug Reports in SQL Server

Database

The import of the merged bug report in to SQL

Server database was achieved using the SQL

Server 2016 import/export wizard. The contents

of the merged excel file was loaded in to the

relational table QT on SQL Server.

2.3 Preprocessing Bug Reports

The report had 71 columns and many columns

were filled with only null values.35 columns did

not have any values and hence all the columns

were dropped from our QT table. The remaining

columns were thoroughly scrutinized and only

the columns mentioned in Table 1 were deemed

relevant to the mining process

Table 1: Columns Identified for Mining

Column Name Definition

ID Primary Key

Project Contains Project

names of projects

handled for QT

framework like Qt

Creator,Qt Installer

Framework,Qt

Mobility etc.

Reporter Name of the person

QT Bug

Tracking

System

Bug
Reports Bug

Reports

Bug
Reports

 Bug
Reports
[Excel
Files]

SQL Server
Import/Export

Wizard

SQL Server
Database

Application of
Mining

Algorithms
[SQL Server

Analysis
Services]

Classification of
Bugs as

Severe/Non
Severe

Classification of
Assignees for

Severe and Non
Severe Bugs

Figure 1: Mining Process

Pre-process
Data

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S2, December 2019

 DOI: 10.35940/ijrte.D1130.1284S219

Retrieval Number: D11301284S219//2019©BEIESP

Published By:Blue Eyes Intelligence
Engineering & Sciences Publication

who reported the bug

Issue Type Classifies the

reported issue as

bug, suggestion,

task etc

Status Holds statuses for

the reported issue

like open ,closed,

 in progress etc.

Priority Holds the

information on the

severity of the issue.

Component Holds the

component names

specific to the issue

Affects Version Holds the version

names for which the

issue is reported

Assignee Holds the name of

the assignee that is

assigned the bug

For the mining process we had to focus only on

bugs that had the status has closed. All bugs that

were not having the closed status were removed

from the table. A total of 15474 bugs were

removed from the table as they were not having

the closed status.

Priority was maintained using the following

priority levels in JIRA.

 P0: Blocker

 P1: Critical

 P2: Important

 P3: Somewhat important

 P4: Low

 P5: Not important

All bugs with priority P0 and P1 were updated

with priority as Severe and all other bugs were

updated with priority as Non-Severe in the QT

table on SQL Server Database. On further

analysis for the null values on the shortlisted

columns, component column was found to have

305 rows as null values and hence all the 305

rows were deleted from the table.

Thus as part of data preprocessing all the

irrelevant columns and rows containing null

values were completely removed. Only bugs

with the closed status were retained.

2.4 Creation of Mining Models for classifying

bugs as severe or non-severe.

SQL Server Analysis Services were used for

generation of mining models using the QT

table. The first mining process was focused on

predicting priority of a reported bug. The input

and output parameters selected for the mining

process is given in table 2.

Table 2: Input and Output Parameters

Parameters Input/output

ID Key Column

Project Input

Reporter Input

Issue Type Input

Priority Predict [Output]

Component Input

Affects Version Input

Mining models were created using the

following algorithms

 Decision Trees

 Naïve Bayes

 Clustering

 Association

 Neural Network

A generated decision tree for three levels is

shown in figure 2

Figure 2: Decision Tree [3 Levels]

Decision Tree is also shown using Microsoft

Generic content tree viewer in figure 3.

 4

Figure 3: Decision Tree –Generic Content Tree

Viewer

The comparison of all algorithms with respect

to predicting severe bugsis shown in figure 4 as

a lift chart. Figure 5 contains the mining legend

of the comparison.

Figure 4: Lift Chart [Severe Bugs]

Figure 5: Mining Legend [Severe Bugs]

The comparison of all algorithms with respect

to predicting non-severe bugs is shown in figure

6 as a lift chart and figure 7 depicts the mining

legend of the comparison

Figure 6: Lift Chart [Non Severe Bugs]

Figure 7: Mining Legend [Non Severe Bugs]

2.5 Creation of Mining Models for classifying

assignees for Severe and Non-Severe Bugs

The main objective behind this mining is the

identification of Assignees that can work on a

severe bug or a non-severe bug

We have applied Association Rule mining to

generate all the associations between Assignees,

component, project and priority.

For severe bugs the support count is maintained

at 40 and minimum probability is 0.42.

The list of rules that satisfy the minimum

support provide us with details of experienced

assignee for each component in every project.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S2, December 2019

 DOI: 10.35940/ijrte.D1130.1284S219

Retrieval Number: D11301284S219//2019©BEIESP

Published By:Blue Eyes Intelligence
Engineering & Sciences Publication

Whenever a bug is classified as severe based on

our previous analysis then that bug can be

assigned to an assignee using the association

rules generated in this step. A part of the

association rules generated for severe bugs is

given in figure 8.

Figure 8: Association Rule Viewer

Association rules between component, project

assignee and non-severe bugs can be identified

and used for assigning classified non-severe

bugs.

3. Discussion

The decision making process on severe bugs in

the software maintenance phase will be

enhanced by the mining of bug reports. Our

objective was to improve the handling of severe

bugs in software maintenance so that system

downtime is reduced by classifying and

assigning bugs to the best suitable engineers.

The mining models used for such classification

provided us with a greater insight on

classification of bugs. Severity of a bug depends

on the project, component, version, issue type

andreporter. It is observed that certain

components always receive non-severe bugs

and certain reporters only report non-severe

bugs. When bugs are reported for such

components or raised by such reporters it can be

directed to engineers who are identified to work

on non-severe bugs. Whereas the bugs arising

out of components and reporters who report a

majority of the severe bugs can be assigned to

engineers who are identified to work on severe

bugs.

The classification models have given us an

opportunity to explore the hidden knowledge on

the factors that affect the severity of a bug. The

comparison of the various algorithms reveals

that Naïve Bayes is more effective in

classification of severe bugs in the test data and

the mining legend shows that the classification

was good for almost 74% of the targeted

population.

4. Conclusion

The use of datamining technique for

classification and assignment of severe bugs not

only aids the decision making process but also

uncovers a lot of factors that contribute to the

severity levels of a bug. Such a mining model

not only helps in classification of bugs but also

gives us information on the projects,

components, versions that contribute to the

maximum number of severe bugs. Corrective

action could be taken to reduce the number of

severe bugs on such projects. The mining

models also enable the identification of the pool

of resources that are skilled in fixing severe

bugs for each version, each component in every

project. Thus application of mining models in

software maintenance for mining severe priority

bugs brings us the promise of system down time

reduction through effective resource utilization.

References

[1] Shao, Qihong, et al. "Efficient ticket routing

by resolution sequence mining." Proceedings of

the 14th ACM SIGKDD international

conference on Knowledge discovery and data

mining. ACM, 2008.

[2] Ohira, Masao, et al. "A dataset of high

impact bugs: manually-classified issue reports."

2015 IEEE/ACM 12th Working Conference on

Mining Software Repositories. IEEE, 2015.

[3]Lamkanfi, Ahmed, and Serge Demeyer.

"Predicting reassignments of bug reports-an

exploratory investigation." Software

Maintenance and Reengineering (CSMR), 2013

17th European

 6

Conference on. IEEE, 2013.

[4]Zhou, Yu, et al. "Combining text mining and

data mining for bug report classification."

Journal of Software: Evolution and Process

(2016).

[5]Tian, Yuan, David Lo, and Chengnian Sun.

"Drone: Predicting priority of reported bugs by

multi-factor analysis." (2013): 200.

[6]QT issues download page

https://bugreports.qt.io/browse/QTWEBSITE-

745?jql=.

