International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S2, December 2019

Mining Severe Priority Bugs in Software Maintenance

Satish C J, Thendral Puyalnithi
'School of Computer Science and Engineering, Vellore Institute of Technology, Vellore
Kalasalingam Academy of Research and Education, Krishnankoil

ABSTRACT

Maintenance of open source software is a hectic task as
the number of bugs reported is huge. The number of
projects, components and versions in an open source
project also contribute to the number of bugs that are
being reported. Classification of bugs based on priority
and identification of the suitable engineers for assignment
of bugs for such huge systems still remains a major
challenge. Bugs that are misclassified or assigned to
engineers who don’t have the component expertise,
drastically affect the time taken towards bug resolution.
In this paper we have explored the usage of data mining
techniques on the classification of bugs and assignment of
bugs to engineers.Our focus was on classifying bugs as
either severe or non-severe and identification of engineers
who have the right expertise to fix the bugs. The
prediction of bug severity and identification of engineers
were done by mining bug reports from JIRA, an open
source software bug tracking tool. The mining process
yielded positive results and will be a decision enhancer
for severe bugs in the maintenance phase.

Keywords: Mining Software Repository, Data Mining,
Software Maintenance

1. INTRODUCTION

A software system undergoes lot of changes
during the software maintenance phase. The
changes can be either change requests or bugs.
Bugs are usually classified as severe, high,
medium or low priority bugs. The priority
denotes the severity of the bug and its impact on
the business. Severe bugs are those which act as
a blocker to the system execution and they need
an emergency fix. All bugs that are reported
should be fixed by the maintenance engineers
within a given time period as mentioned in a
Service Level Agreement.

Bug tracking systems are used for managing
bugs. Whenever a system user identifies a bug,
the user reports the bug using the bug tracking
system.Based on the severity of the bug the user
assigns a priority to the bug. Bugs that are
reported are later assigned to maintenance
engineers by project managers who manage the
project.

DOI: 10.35940/ijrte.D1130.1284S219

Retrieval Number: D11301284S219//2019©BEIESP

Most often the users who report the bug report a
bug as a severe bug when it’s actually a
medium or low priority bug. If a reported severe
priority bug is found to be of a lower priority
upon analysis, the maintenance engineers can
downgrade the priority of the bug after
informing the user who reported the bug. The
problem with this approach is that engineers
spend time analyzing a low priority bug as a
severe bug and this hampers the fixing of actual
severe bugs.

Another important problem with respect to bug
fixing is identifying the right person who can
fix a bug. Most often the assignment of bugs to
engineers is done based on the workload of each
engineer. As severe bugs need an immediate
fix, only engineers who have a good experience
in handling such bugs can provide a quick
resolution. Assignment of severe bugs to
engineers who don’t have the right experience
levels can lead to poor fixes or reassignment of
bugs[1]. A delay in fixing a severe priority bug
has a very high level of impact on the business
and can decrease customer satisfaction[2][3].
Bug classification and assignment has been
addressed by researchers in the
past[3][4][5].Such studies considered all bugs to
be of equal importance and were not focused on
mining severe bugs. Our approach deals with
addressing these issues on severe priority bugs
by mining bug reports. We have provided
mining as an approach for classification of bugs
as either severe or non-severe. Such a
classification of reported bugs can prevent
assignment of low priority bugs as severe
priority. ldentification of the best person to
assign a severe bug is also achieved by mining
the past history on bug fixes.

2. Mining Process

We have used bug reports on QT which is open
source software. Bug management for QT is
done using JIRA, a bug

Published By:Blue Eyes Intelligence
Engineering & Sciences Publication

Exploring

tracking tool developed by Australian Company
Atlassian [6].The important steps in our mining
process are given below

= Extraction of Bug Reports from JIRA

= Import of Bug Reports in SQL Server
Database

= Preprocessing Bug Reports

Pre-process
Data

Figure 1: Mining Process SQL
SEIvVEl UdldldsSE vwds dullleveu usiiy uie SQL
Server 2016 import/export wizard. The contents
of the merged excel file was loaded in to the
relational table QT on SQL Server.

The bugs were either classified as severe or
non-severe. We have also identified the
assignees that are best suitable for both severe
and non-severe bugs.

Bugs that are classified as severe will be
assigned to assignees that have been identified
for fixing severe bugs using our mining method.
This approach enables the handling of severe
bugs effectively without any delay by utilizing
the best person to fix the bug. This will reduce
the downtime of the system and improve
customer satisfaction on the supported business.

2.1 Extraction of Bug Reports from JIRA

The bug reports were extracted from bug
tracking tool JIRA as Excel Files.As Jira was
configured to allow only downloads of thousand
bugs per report, there was a need to download
many reports. Our approach was to download
bug reports for every month, as the number of
bugs reported for every month was lesser than
thousand. Reports for the last five years were
extracted

2.3 Preprocessing Bug Reports

The report had 71 columns and many columns
were filled with only null values.35 columns did
not have any values and hence all the columns
were dropped from our QT table. The remaining
columns were thoroughly scrutinized and only
the columns mentioned in Table 1 were deemed
relevant to the mining process

Table 1: Columns Identified for Mining

Column Name Definition
ID Primary Key
Project Contains Project

names of projects
handled for QT

framework like Qt
Creator,Qt Installer
Framework,Qt
Mobility etc.

Reporter Name of the person

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S2, December 2019

who reported the bug

Classifies the
reported issue as
bug, suggestion,
task etc

Issue Type

Status Holds statuses for
the reported issue
like open ,closed,
in progress etc.

Holds the
information on the
severity of the issue.

Priority

Holds the
component names
specific to the issue

Component

Affects Version Holds the version
names for which the
issue is reported

Holds the name of
the assignee that is
assigned the bug

Assignee

For the mining process we had to focus only on
bugs that had the status has closed. All bugs that
were not having the closed status were removed
from the table. A total of 15474 bugs were
removed from the table as they were not having
the closed status.

Priority was maintained using the following
priority levels in JIRA.

= PO: Blocker

= P1: Critical

= P2: Important

= P3: Somewhat important
= P4:Low

= P5: Not important

All bugs with priority PO and P1 were updated
with priority as Severe and all other bugs were
updated with priority as Non-Severe in the QT
table on SQL Server Database. On further
analysis for the null values on the shortlisted
columns, component column was found to have
305 rows as null values and hence all the 305
rows were deleted from the table.

Thus as part of data preprocessing all the
irrelevant columns and rows containing null
values were completely removed. Only bugs

with the closed status were retained.
DOI: 10.35940/ijrte.D1130.1284S219

Retrieval Number: D113012845219//2019©BEIESP

2.4 Creation of Mining Models for classifying
bugs as severe or non-severe.

SQL Server Analysis Services were used for
generation of mining models using the QT
table. The first mining process was focused on
predicting priority of a reported bug. The input
and output parameters selected for the mining
process is given in table 2.

Table 2: Input and Output Parameters

Parameters Input/output

ID Key Column
Project Input

Reporter Input

Issue Type Input

Priority Predict [Output]
Component Input

Affects Version Input

Mining models were created using the
following algorithms

= Decision Trees

= Naive Bayes

= Clustering

= Association

= Neural Network

A generated decision tree for three levels is
shown in figure 2

[ste Type
= Sugstn
i E— Renortermt
= el atmsen Bt
O sue Type nck)
= Suesir o
e Rt

='E5l afamsen Bt

Figure 2: Decision Tree [3 Levels]

Decision Tree is also shown using Microsoft
Generic content tree viewer in figure 3.

Published By:Blue Eyes Intelligence
Engineering & Sciences Publication

7l Miing Structre 4 Mining Models l% U=k = 3 Miing Accuracy Chart §F Mining Model redicton

Miring Mode!: | Dedsion Trees v Viewer: |Micrasaft Generic Content Tree Viewer v {1}

Node Caption (Unique ID)

=)
=+ Al {000000003)
Tssue Type = ‘Suggestion’ (10000000300)
o Issue Type not = Suagestion’ (00000000301)
Reporter = 'Eski Abrahamsen Blomfeldt’ (J000000030100)
=J- Reporter not = 'Eskil Abrahamsen Blomfeldt (2000000030101)
Component = Packaqing & Installer' (00000003010100)
Component not = Packaging & Installer’ (000000003010101)

~Reporter ='Eke Ziler' (00000000301010100)
=+ Reporter not = Eke Zller (00000000301010101)
= Project = (0000000030101010100)
-Component = ‘Documentation' (000000003010102010000)
|- Component not = Documentation' (00000003010101010001)
3---.!\{'5&(!3 Version = 4,32 (0000000030 1010101000100)
- Affects Version not ='48.2 (00000000301010101000101)
Component = ‘Core; Date/Time' (0000000030101010100010100)
5 Component nat = Core: Dat=/Time' (000000003010 101010001010 1)
Affects Version ='4,7.4 (000000003010101010001010100)
- Affects Version not ='4,7.4 (200000003010101010001010101)

. Draiart net = 'NF AARANARAZAIR1AIAA 1Y

Figure 3: Decision Tree —Generic Content Tree
Viewer

The comparison of all algorithms with respect
to predicting severe bugsis shown in figure 4 as
a lift chart. Figure 5 contains the mining legend
of the comparison.

Data Mining Lift Chart for Mining Structure: Qt Closed

[|
al o 7

100
1

;
/ 127V 4
ig / /_/
Lz
iy [// ~
WAV
g €N / /
N/

0 i 4 &0 3 100
Overall Population %

Decision Trees Neural Network

— a3sociafion Random Guess Model
clustering = |deal Mode for: Decision Trees, association, clustering, Naive Bayes, Neural Network
Haive Bayes

Figure 4: Lift Chart [Severe Bugs]

Mining Legend A x
Population percentage: 49.50%

Series, Model Score Target population Predict probability
Decision Trees 0.66 61.51% 18.57%
I association 0.53 45.83% 17.73%
clustering 0.69 17.24%
Maive Bayes 0.74 15.61%
MNeural Network 0.7

13.49%
Random Guess Model :

I Ideal Model for: Decisio..

Figure 5: Mining Legend [Severe Bugs]

The comparison of all algorithms with respect
to predicting non-severe bugs is shown in figure
6 as a lift chart and figure 7 depicts the mining
legend of the comparison

Data Mining Lift Chart for Mining Structure: Qt Closed

100
§
T 8
§
=
9
2
é 60
£
2
b
R
s 40
2
§
9
i
]
[
i
0 2 40 60 80 100
Overall Population %
Decision Trees Neural Network
= association Random Guess Model
clustering ~— |deal Mode! for: Decision Trees, association, clustering, Naive Bayes, Neural Network
Naive Bayes

Figure 6: Lift Chart [Non Severe Bugs]

Mining Legend *OX
Population percentage: 49.50%

Series, Model Score Target population Predict probability
Decision Trees 0.89 53.01% 81.43%
I association 0.85 50.64% 82.27%
clustering 0.89 53.65% 82.81%
Naive Bayes 0.91 54.82% 84.61%

Neural Network 0.90 53.88% 86.50%
Random Guess Model : :

I Ideal Model for: Decisio..,

Figure 7: Mining Legend [Non Severe Bugs]

2.5 Creation of Mining Models for classifying
assignees for Severe and Non-Severe Bugs

The main objective behind this mining is the
identification of Assignees that can work on a
severe bug or a non-severe bug

We have applied Association Rule mining to
generate all the associations between Assignees,
component, project and priority.

For severe bugs the support count is maintained
at 40 and minimum probability is 0.42.

The list of rules that satisfy the minimum
support provide us with details of experienced
assignee for each component in every project.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4S2, December 2019

Whenever a bug is classified as severe based on
our previous analysis then that bug can be
assigned to an assignee using the association
rules generated in this step. A part of the
association rules generated for severe bugs is
given in figure 8.

Miimum probabiy: 04 5 Pl ‘

Mrimum nportnce: WEF om: Sho attrbute name and vlue

[] Showlngnane Mavimum roms: m

opr Importne L1

0.5% _Componen
0,538 _Componen
058 _Componen
0.4 _Componen
0.4 _Componen
047 _Componen

Bl System -» Assignes = Osnad Buddenhegen
U1 mec5 (cocoa) ntegration, Project = Qt -> Assignee = Marten Spnvig

t=
t=
t = Gl macO3 (cocaa) ntegration -» Assignes = Morten Sinig
t = Vet -» Assines = Alan Sendfed Jersen
t = Webt, Project = Gt -» Assignee = Alan Sandfeld Jensen
t = Documentation, Poject = Gt -» Assgnee =arth Smih

41 _ L. Component = QtPorts: Andraid -» Assgnee = Exki Abrahemsen Bomfect

041t _ L Comparent = Qfforts: Ancfod, roject = Qt - » Assgnee = Eskl Abrahamsen Blomfelgt

041 _ Component = Project & Buid Menagement -» Assigne = Daniel Teske
t=
t=
t=
t=
t=
t=
t=
t=

041 _ Comparent =Project & Buid Menagement, Project = Qt Creator - Assgnes = Darie Teske
0.4% _Componen
0438 _Componen
0.4% _Componen
0431 _Componen
043 _Componen
04 _Componen
42 _Componen

Qt3D, Project = Qt -> Assignes = Sean Harmer

(30 -» Assigne = Sean Hamer

Dacumentation -» Assignee = Marthn Snith

Edtors, Project = Qf Creator -» Assignee =David Schuz
Etors-» Assignee = David Schuiz

Al Other Tssues -» Assigne = Eke Zler

Al Other Tesues, Project = (Ot Creator -» Assignee = Eke Zler

Figure 8: Association Rule Viewer

Association rules between component, project
assignee and non-severe bugs can be identified
and used for assigning classified non-severe
bugs.

3. Discussion

The decision making process on severe bugs in
the software maintenance phase will be
enhanced by the mining of bug reports. Our
objective was to improve the handling of severe
bugs in software maintenance so that system
downtime is reduced by classifying and
assigning bugs to the best suitable engineers.

The mining models used for such classification
provided us with a greater insight on
classification of bugs. Severity of a bug depends
on the project, component, version, issue type
andreporter. It is observed that certain
components always receive non-severe bugs
and certain reporters only report non-severe
bugs. When bugs are reported for such

DOI: 10.35940/ijrte.D1130.12845219
Retrieval Number: D113012845219//2019©BEIESP

components or raised by such reporters it can be
directed to engineers who are identified to work
on non-severe bugs. Whereas the bugs arising
out of components and reporters who report a
majority of the severe bugs can be assigned to
engineers who are identified to work on severe
bugs.

The classification models have given us an
opportunity to explore the hidden knowledge on
the factors that affect the severity of a bug. The
comparison of the various algorithms reveals
that Naive Bayes is more effective in
classification of severe bugs in the test data and
the mining legend shows that the classification
was good for almost 74% of the targeted
population.

4. Conclusion

The wuse of datamining technique for
classification and assignment of severe bugs not
only aids the decision making process but also
uncovers a lot of factors that contribute to the
severity levels of a bug. Such a mining model
not only helps in classification of bugs but also
gives us information on the projects,
components, versions that contribute to the
maximum number of severe bugs. Corrective
action could be taken to reduce the number of
severe bugs on such projects. The mining
models also enable the identification of the pool
of resources that are skilled in fixing severe
bugs for each version, each component in every
project. Thus application of mining models in
software maintenance for mining severe priority
bugs brings us the promise of system down time
reduction through effective resource utilization.

References

[1] Shao, Qihong, et al. "Efficient ticket routing
by resolution sequence mining." Proceedings of
the 14th ACM SIGKDD international
conference on Knowledge discovery and data
mining. ACM, 2008.

[2] Ohira, Masao, et al. "A dataset of high
impact bugs: manually-classified issue reports.”
2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015.

[3]Lamkanfi, Ahmed, and Serge Demeyer.
"Predicting reassignments of bug reports-an

exploratory investigation." Software
Maintenance and Reengineering (CSMR), 2013
17th European

Published By:Blue Eyes Intelligence
Engineering & Sciences Publication

Conference on. IEEE, 2013.

[4]Zhou, Yu, et al. "Combining text mining and
data mining for bug report classification.”
Journal of Software: Evolution and Process
(2016).

[5]Tian, Yuan, David Lo, and Chengnian Sun.
"Drone: Predicting priority of reported bugs by
multi-factor analysis." (2013): 200.

[6]QT issues download page

https://bugreports.qt.io/browse/QTWEBSITE-
7452jql=.

