Some Expansion of Fuzzy Paranormal Operators

A. Radharamani, A. Brindha

Abstract: Let \mathbb{H} be a Fuzzy Hilbert space over the fields of \mathbb{R}/\mathbb{C} and $FB(\mathbb{H})$ is the set of all fuzzy continuous linear operator on \mathbb{H}. In this paper we introduce the expansion of different fuzzy paranormal operators like n-fuzzy paranormal operator, $*$-fuzzy paranormal operator and n^k-fuzzy paranormal operator, which are developed from paranormal operators and their characteristics. The study resulted the properties of an n-fuzzy paranormal operator, $*$-fuzzy paranormal operator and n^k-fuzzy paranormal operator and their relationship between them. To investigate the nature of these operators, all it needs the nature of the n-fuzzy paranormal operator. It is emphasized on the characteristics and relationships of the n^k-Fuzzy paranormal operator and $*$ - fuzzy paranormal operator on FH-space. Therefore it necessary to study more about the properties of the n^k-Fuzzy paranormal operator and $*$ - fuzzy paranormal operator on FH-space.

Keywords: Adjoint Fuzzy operator, Fuzzy Hilbert space (FH-space), Self adjoint fuzzy operator, Fuzzy paranormal operator, n-fuzzy paranormal operator, $*$-fuzzy paranormal operator and n^k-fuzzy paranormal operator.

I. INTRODUCTION

The notion of fuzzy norm on a linear space is first introduced by Katsaras[5]. In 1991, the definition of fuzzy inner product space is first introduced by Biswas[7]. Riesz theorem was given by Youngst[9] using fuzzy concept in 2007. In 2009 Goudarzi and Vaeezpour [6] have been introduced the definition of fuzzy Hilbert space. They introduced triplets $(\mathbb{H}, F, \cdot)^*$, where \mathbb{H} is the Fuzzy Hilbert space, F is the Fuzzy set on $\mathbb{H} \times \mathbb{R}$, and \cdot^* is continuous t-norm. Sudad M. Rasheed [4] introduced the concept of adjoint fuzzy operator. That is $\langle u, a \cdot^*b \rangle = < a, u^*b \rangle$. Also self adjoint fuzzy operator if $u = u^*$ where u^* is adjoint fuzzy operator of u. Radharamani et al.[1] introduced fuzzy normal operator if $u^* = u$ and let $u = u^*$. Then $u^* = u = u$. Also fuzzy unitary operator and fuzzy hyponormal operator was introduced. An operator $u \in FB(\mathbb{H})$ has the property of $\|u^2a\| = \|u^3a\| = \|u^4a\|$ for every unit vector $a \in \mathbb{H}$ is named as fuzzy paranormal operator and introduced by Radharamani et al.[3] in 2019. Then the fuzzy paranormal operator definition is expanded into positive integer n, $\|u^2a\| \geq \|u^n\cdot a\|^2$ for some unit vector $a \in \mathbb{H}$.

In this paper, we introduce an operator $u \in FB(\mathbb{H})$ with the property of $\|u^2a\| \geq \|u^n\cdot a\|^2$ is called n-fuzzy paranormal operator and we explained some characteristics of n-fuzzy paranormal operator. Before that requires to defining and explaining the theory of n-fuzzy paranormal operator. We give different properties of n-fuzzy paranormal operator and also give important result about it. An operator $u \in FB(\mathbb{H})$ with the characteristics of $\|u^2a\| \|a\| \geq \|u^a\|^2$ is said to be $*$-fuzzy paranormal operator with u^* is Adjoint fuzzy operator of u^*.

In this study, the consolation of the nth-Fuzzy paranormal operator and $*$-fuzzy paranormal operator and is more emphasized on the characteristics and relationships of the nth-Fuzzy paranormal operator and $*$-fuzzy paranormal operator on FH-space. Therefore it necessary to study more about the properties of the nth-Fuzzy paranormal operator and $*$-fuzzy paranormal operator on FH-space.

II. PRELIMINARIES

Definition 2.1: [4] Fuzzy Hilbert space (FH-space)
Let (\mathbb{H}, F, \cdot^*) be a fuzzy Hilbert space with IP: $\langle a, b \rangle = sup\{ u \in \mathbb{H} : F(a, b, u) < 1 \} \forall a, b \in \mathbb{H}$. Then \mathbb{H} is complete in the $\| \cdot \|$ then \mathbb{H} is called Fuzzy Hilbert space (FH-space).

Definition 2.2: [4] Adjoint Fuzzy operator
Let (\mathbb{H}, F, \cdot^*) be a Fuzzy Hilbert space and let $u \in FB(\mathbb{H})$ be T continuous linear functional. Then 3 unique $u^* \in FB(\mathbb{H})$ such that $\langle u, b \rangle = (u, b)^*v$ $a \in \mathbb{H}$.

Note: Let $FB(\mathbb{H})$ be the set of all fuzzy continuous linear operator on \mathbb{H}.

Definition 2.3: [4] Self-Adjoint Fuzzy operator
Let (\mathbb{H}, F, \cdot^*) be a FH-space with IP: $(a, b) = sup\{ u \in R, F(a, b, u) < 1 \} \forall a, b \in \mathbb{H}$ and let $u \in FB(\mathbb{H})$ then u is self-adjoint Fuzzy operator, if $u = u^*$, where u^* is adjoint Fuzzy operator of u.

Theorem 2.4: [4]
Let (\mathbb{H}, F, \cdot^*) be a FH-space with IP: $(a, b) = sup\{ u \in R, F(a, b, u) < 1 \} \forall a, b \in \mathbb{H}$ and let $u \in FB(\mathbb{H})$. Then u is a Fuzzy Unitary operator.

Theorem 2.5: [4]
Let (\mathbb{H}, F, \cdot^*) be a FH-space with IP: $(a, b) = sup\{ u \in R, F(a, b, u) < 1 \} \forall a, b \in \mathbb{H}$ and let $u \in FB(\mathbb{H})$. Then u is a Fuzzy Normal operator.

Definition 2.6: [4] Fuzzy Paranormal operator
Let (\mathbb{H}, F, \cdot^*) be a Fuzzy Hilbert space with IP: $(a, b) = sup\{ u \in R, F(a, b, u) < 1 \} \forall a, b \in \mathbb{H}$ and let $u \in FB(\mathbb{H})$. Then u is a Fuzzy Paranormal operator if $\|u^2a\| \geq \|u^3a\| \forall a \in \mathbb{H}$.

Definition 2.7: [4] Fuzzy Paranormal operator
Let (\mathbb{H}, F, \cdot^*) be a Fuzzy Hilbert space with IP: $(a, b) = sup\{ u \in R, F(a, b, u) < 1 \} \forall a, b \in \mathbb{H}$ and let $u \in FB(\mathbb{H})$. Then u is a Fuzzy Paranormal operator if $\|u^2a\| \geq \|u^3a\| \forall a \in \mathbb{H}$.

Note: Let $u \in FB(\mathbb{H})$. Then u is a Fuzzy Paranormal operator if $\|u^2a\| \geq \|u^3a\| \forall a \in \mathbb{H}$.
Some Expansion of Fuzzy Paranormal Operators

Theorem 2.9:[4] Let $\langle\mathfrak{H}, \mathbb{F}^*, \alpha \rangle$ be a FH – space with IP: $(a, b) = \text{Sup}\{u \in \mathbb{R}; F(a, b, u) = \text{Sup}\{u \in \mathbb{R}; F(a, b, u) = 0\}$ and let U' be the adjoint Fuzzy operator of $U \in FB(\mathfrak{H})$, then

i. $(U^*)' = U$

ii. $(\alpha U)' = \alpha U$

iii. $(\alpha U + \beta V)' = \alpha U' + \beta V' \text{ where } \alpha, \beta \text{ are scalars}$

and $U \in FB(\mathfrak{H})$.

\[\text{i.e. } (U^*)' = V^* \text{ where } V \in \mathbb{F}^*\]

III. MAIN RESULTS

Definition 3.1 Let $\langle\mathfrak{H}, \mathbb{F}^*, \alpha \rangle$ be a fuzzy Hilbert space with IP: $\langle a, b \rangle = \text{Sup}\{u \in \mathbb{R}; F(a, b, u) \leq 1\}$ and let $U \in FB(\mathfrak{H})$. The operator U is called n- fuzzy paranormal operator if $\|U^{n+1}a\| \geq \|Ua\|^{n+1}$ for $n \in N$ and for some unit vector $a \in \mathbb{F}$.

Theorem 3.2 Let $U \in FB(\mathfrak{H})$. If U is n-fuzzy paranormal operator then U is fuzzy paranormal.

Proof: Given U is n- fuzzy paranormal operator.

By the definition, $\|U^{n+1}a\| \geq \|Ua\|^{n+1}$

Put $n=1$, $\|U^2a\| \geq \|Ua\|^2$

Therefore U is fuzzy paranormal.

Theorem 3.3 Let $U \in FB(\mathfrak{H})$. If U is fuzzy paranormal then U is n-fuzzy paranormal operator for $n \in N$.

Proof: Take $a \in \mathbb{F}$.

By using the mathematical induction, if $n=1$

$\|U^{n+1}a\| = \|U^{n+1}a\| \geq \|Ua\|^{n+1}$

i.e. $\|Ua\|^{n+1} \geq \|Ua\|^{n+1}$

if $n=2$,

$\|U^2a\| = \|U^2a\| \geq \|Ua\|^2$

i.e. $\|U^2a\|^2 \geq \|Ua\|^2$ etc.,

if $n=k$ is true

$\|U^k a\|^k \geq \|Ua\|^k$

Now we have to prove that is true for $n=k+1$.

Let $\|Ua\|^{k+1} \geq \|Ua\|^{k+1} + \|Ua\|$

$\leq \|U^k a\|^{k+1} + \|Ua\|$

$\|Ua\|^{k+1} \leq \|U^{k+1}a\|$

Hence U is n-fuzzy paranormal operator.

Definition 3.4 Let $\langle\mathfrak{H}, \mathbb{F}^*, \alpha \rangle$ be a fuzzy Hilbert space with IP: $\langle a, b \rangle = \text{Sup}\{u \in \mathbb{R}; F(a, b, u) \leq 1\}$ and let $U \in FB(\mathfrak{H})$. The operator U is called n- fuzzy paranormal operator if $\|U^{n+1}a\| \geq \|Ua\|^{n+1}$ for $n \in N$.

Note: Let $U \in FB(\mathfrak{H})$ be a n- fuzzy paranormal operator if $\|U^{n+1}a\| \geq \|Ua\|^{n+1}$ for $n \in N$ and \forall unit vector $a \in \mathbb{F}$.

Theorem 3.5 Let $U, V \in FB(\mathfrak{H})$. If U, V are Self-adjoint fuzzy operators then $U + V$ is n-fuzzy paranormal operator for $n \in N$.

Proof: Take $n \in N$ for a $a \in \mathbb{F}$ with $\|a\| = 1$. Let $\|(U + V)^{n+1}a\| \leq \|Ua\|^{n+1}$

\[\text{Sup}\{u \in \mathbb{R}; F(U + V, a, u) \leq 1\} \leq \|Ua\|^{n+1} \leq \|Ua\|^{n+1}\]

Therefore $U + V$ is n-fuzzy paranormal operator.

Theorem 3.6 Let $U, V \in FB(\mathfrak{H})$. If U, V are Self-adjoint fuzzy operators then UV is n-fuzzy paranormal operator for $n \in N$.

Proof: Take $n \in N$ for a $a \in \mathbb{F}$ with $\|a\| = 1$.

Since U and V are self-adjoint fuzzy operators.

We know that $U = UV = VU$.

To prove that UV is an n-fuzzy paranormal operator.

Let $\|(UV)^{n+1}a\| \leq \|(U + V)^{2n}\|a\|a\|

$\text{Sup}\{u \in \mathbb{R}; F((UV)^{n+1}a, (U + V)^{2n}a, u) \leq 1\} \leq \|(U + V)^{2n}\|a\|a\|

Therefore UV is n-fuzzy paranormal operator.

Theorem 3.7 Every fuzzy paranormal operator is 1-fuzzy paranormal operator.

Proof: Take $n \in N$ for a $a \in \mathbb{F}$ with $\|a\| = 1$.

Since $U \in FB(\mathfrak{H})$ is fuzzy paranormal operator

$\|U^2a\| \geq \|Ua\|^2$

$\|U^2a\| \geq \|Ua\|^2$

Hence U is 1-fuzzy paranormal operator.

Theorem 3.8 Let $U \in FB(\mathfrak{H})$ is a Fuzzy Hilbert space and Self-adjoint fuzzy operator. If U is a n-fuzzy paranormal operator then U^n is n-fuzzy paranormal operator for $n \in N$.

Proof: Take $n \in N$ for a $a \in \mathbb{F}$ with $\|a\| = 1$.

We know that U is n-fuzzy paranormal operator.

$\text{i.e. } \|U^n a\|^2 \leq \|U^2a\|^2$

To show that $\|(U^n)^{n+1}a\|^2 \leq \|(U^n)^{2n}\|a\|a\|

$\text{Sup}\{u \in \mathbb{R}; F((U^n)^{n+1}a, (U^n)^{2n}a, u) \leq 1\} \leq \|(U^n)^{2n}\|a\|a\|

Therefore U^n is n-fuzzy paranormal operator.
An operator $U \in FB(\mathbb{I})$ is n^0-fuzzy paranormal operator if and only if $U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2 \geq 0$ for all $\lambda \geq 0, n \in N$.

Proof:

Take $n \in N$ for every $a \in \mathbb{I}$ with $\|a\| = 1$

$U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2 \geq 0 \iff$

$((U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2)a, a) \geq 0$

$U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2 \geq 0 \implies$

$\sup \{ u \in \mathbb{R} : F(U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2) a, a, u) < 1 \} \geq 0$

$U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2 \geq 0 \implies$

$\sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} U^{2n} a, a, u) < 1 \} \geq 0$

$-2\lambda \sup \{ u \in \mathbb{R} : F(U^{\ast n} U^{2n} a, a, u) \} < 1 \} \geq 0$

$U^{\ast n} U^{2n} - 2U^n U^n + \lambda^2 \geq 0 \implies$

$\sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} U^{2n} a, a, u) \} \geq 0$

Since if $a > 0$, b and c are real numbers then $a^2 + b + c \geq 0$ for every real a and if only if $b^2 - 4ac \leq 0$ in an analogous manner, using elementary property of real quadratic forms.

$\implies 4\|U^n a\|^4 - 4\|a\|^2\|U^{\ast n} a \|^2 \leq 0$

$\implies \|U^n a\|^4 \leq \|a\|^2\|U^{\ast n} a \|^2$

$\implies \|U^n a\|^2 \leq \|U^{\ast n} a\|^2$

$\|U^n a\|^2 \geq \|U^{\ast n} a\|^2$

Hence U is n^0-fuzzy paranormal operator.

Theorem 3.10:

Let $U \in FB(\mathbb{I})$. If U is n^0-fuzzy paranormal operator and self-adjoint fuzzy operator then U^\ast is n^0-fuzzy paranormal operator for $n \in N$.

Proof:

Take $n \in N$ for a $a \in \mathbb{I}$ with $\|a\| = 1$

Since U is n^0-fuzzy paranormal operator, $i.e$. $\|U^{\ast n} a\|^2 \geq \|a\|^2$

Let $\|U^\ast n a\|^2 = (U^{\ast n} a, (U^\ast n) a)$

$= \sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a) \} < 1 \}$

$= \sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a, u) \} < 1 \}$

$\sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a, u) \} < 1 \}$

$= \sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a, u) \} < 1 \}$

$\|U^\ast n a\|^2 \leq \|U^{\ast n} a\|^2$

Implies that $\|U^\ast n a\|^2 \geq \|U^{\ast n} a\|^2$

Therefore U^\ast is n^0-fuzzy paranormal.

Theorem 3.11:

If $U \in FB(\mathbb{I})$ is n^0-fuzzy paranormal operator and self-adjoint fuzzy operator. Then U^\ast is n^0-fuzzy paranormal operator for $n \in N$.

Proof:

Take $n \in N$ for a $a \in \mathbb{I}$ with $\|a\| = 1$

Since U is n^0-fuzzy paranormal operator, $i.e$. $\|U^{\ast n} a\|^2 \geq \|a\|^2$

Let $\|U^\ast n a\|^2 = (U^{\ast n} a, (U^\ast n) a)$

$= \sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a) \} < 1 \}$

$= \sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a, u) \} < 1 \}$

$\sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a, u) \} < 1 \}$

$= \sup \{ u \in \mathbb{R} : \mathbb{F}(U^{\ast n} a, (U^\ast n) a, u) \} < 1 \}$

$\|U^\ast n a\|^2 \leq \|U^{\ast n} a\|^2$

Implies that $\|U^\ast n a\|^2 \geq \|U^{\ast n} a\|^2$

Therefore U^\ast is n^0-fuzzy paranormal.
Some Expansion of Fuzzy Paranormal Operators

Let (I,I,F,*) be a fuzzy Hilbert space with IP: ⟨a,b⟩= sup{u∈ IR; F(a,b,u) < 1} ∀a,b ∈ I and self adjoint fuzzy operator.
Let U,V ∈ FB(I) be a Self adjoint fuzzy operators. Then UV is *-fuzzy paranormal operator for n ∈ N.

Proof:
Take n ∈ N for a ∈ I with ||a||=1.
Since U and V are self adjoint fuzzy operators.
we know that U = U*, V = V*.
To prove that UV is a *-fuzzy paranormal operator.
Let ||(UV)^* a||^2 ≤ ||(UV)^2 a||a||
= sup {u ∈ IR; F((UV)^* a, (UV)^* a, u) < 1} ≤ sup {u ∈ IR; F((UV)^* (UV)^* a, a, u) u < 1} ≤ sup {u ∈ IR; F((U^2)^* a, a, u) u < 1} ≤ sup {u ∈ IR; F(U^2 a, a, u) u < 1} ≤ ((U^2)^* a, a)
Therefore UV is *-fuzzy paranormal operator.

Theorem: 3.18
Let (I,I,F,*) be a fuzzy Hilbert space with IP: ⟨a,b⟩= sup{u∈ IR; F(a,b,u) < 1} ∀a,b ∈ I and self adjoint fuzzy operator.
Let U,V ∈ FB(I). If U and V are self adjoint fuzzy operators then U + V is *-fuzzy paranormal operator for n ∈ N.
Proof:
Take n ∈ N for a ∈ I with ||a||=1.
Let ||(U + V)^* a||^2 = ((U + V)^* a, (U + V)^* a) ≤ sup {u ∈ IR; F((U + V)^* (U + V)^* a, a, u) u < 1} ≤ sup {u ∈ IR; F(U^2 a, a, u) u < 1} ≤ ((U^2 a, a)
Therefore U + V is *-fuzzy paranormal operator.

Theorem: 3.19
If U ∈ FB(I) is fuzzy paranormal operator and self adjoint fuzzy operator then UV is *-fuzzy paranormal operator for.
Proof:
For a ∈ I with ||a||=1.
We know that U is fuzzy paranormal operator.
i.e ||U^2 a|| ≥ ||U a||^2 and U = U*.
Let ||U’a||^2 = (U’a, U’a) ≤ sup {u ∈ IR; F(U U*a, a, u) u < 1} ≤ sup {u ∈ IR; F(U^2 a, a, u) u < 1} ≤ ((U^2 a, a)
Therefore U is *-fuzzy paranormal operator.

Theorem: 3.20
If U ∈ FB(I) is *-fuzzy paranormal operator and self adjoint fuzzy operator then U^2 is *-fuzzy paranormal operator for n ∈ N.
Proof:
For a ∈ I with ||a||=1.
We know that U is fuzzy paranormal operator.
i.e ||U^2 a|| ≥ ||U a||^2 and U = U*.
Let ||U’a||^2 = (U’a, U’a) ≤ sup {u ∈ IR; F(U U*a, a, u) u < 1} ≤ sup {u ∈ IR; F(U^2 a, a, u) u < 1} ≤ ((U^2 a, a)
Therefore U is *-fuzzy paranormal operator.
Since U is *- fuzzy paranormal operator i.e $\|U^* a\|^2 \leq \|U^2 a\|\|a\|$ and $U = U^*$. Let $\|(U^n)^* a\|^2 = (U^n)^* a, (U^n)^* a) = \text{Sup} \{u \in \mathbb{R} : F((U^n)^* a, (U^n)^* a) < 1\}$ = $\text{Sup} \{u \in \mathbb{R} : F(U^n (U^n)^* a, a, u) < 1\}$ $\text{Sup} \{u \in \mathbb{R} : F(U^n (U^n)^* a, a, u) < 1\}$ = $\text{Sup} \{u \in \mathbb{R} : F(U^n a, a + t) < 1\}$ $\|(U^n)^* a\|^2 \leq \|(U^n)^* a\|^2 \leq \|(U^n)^* a\|^2 \leq \|(U^n)^* a\|^2$ Implies that $\|(U^n)^* a\|^2 \leq \|(U^n)^* a\|^2$. Therefore U^n is *- fuzzy paranormal operator for $n \in N$.

III. CONCLUSION

The conclusion that can be taken from a new idea of fuzzy paranormal operator in Fuzzy Hilbert space, example and characteristics of n- Fuzzy paranormal operator, ^*-Fuzzy paranormal operator and n^*-Fuzzy paranormal operator including addition and multiplication operators and its connection with self-adjoint fuzzy operator. In addition other characteristics are found and its connection between each of the operators of such other definition.

ACKNOWLEDGEMENT

The Authors are appreciated to the referees for these useful and affective ideas.

REFERENCES

AUTHORS PROFILE

A Radharamani is a Assistant professor in Mathematics, Chikkanna Govt. Arts College, Bharathiar University, Thanjavur, India.

Email: radhabtk@gmail.com