Group S_3 Cordial Remainder Labeling

A. Lourdusamy, S. Jenifer Wency, F. Patrick

Abstract: Let $G = (V(G), E(G))$ be a graph and let $g : V(G) \rightarrow S_3$ be a function. For each edge xy, assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_3 cordial remainder labeling of G if $|v_g(x) - v_g(y)| \leq 1$ and $|e_g(0) - e_g(1)| \leq 1$, where $v_g(x)$ denotes the number of vertices labeled with x and $e_g(i)$ denotes the number of edges labeled with i ($i = 0, 1$). A graph G which admits a group S_3 cordial remainder labeling is called a group S_3 cordial remainder graph. In this paper, we introduce the concept of group S_3 cordial remainder labeling. We prove that some standard graphs admit a group S_3 cordial remainder labeling.

Keywords: Group S_3 cordial remainder labeling, Group S_3 cordial remainder graph, path, cycle.

I. INTRODUCTION

By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ so that the order and size of G are $|V(G)|$ and $|E(G)|$ respectively. Terms are not defined here follows from Harary [4]. Graph labeling was first introduced in 1960’s. Most of the graph labeling trace their origins in the paper presented by Alex Rosa in 1967 [6]. The complete survey of graph labeling is in [3]. Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by I. Cahit in [1]. Ponraj et al. introduced the concept of remainder cordial labeling in [5]. Chandra et al. introduced the concept of group S_3 cordial prime labeling in [2]. Motivated by these concepts, we introduce the concept of group S_3 cordial remainder labeling.

II. PRELIMINARIES

Definition 1.1. The join of two graphs G_1 and G_2 is denoted by $G_1 + G_2$, and whose vertex set is $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and edge set is $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}$.

Definition 1.2. The wheel W_n is defined as the join $C_n + K_1$.

Definition 1.3. The graph $F_n = P_n + K_1$ is called a fan.

Definition 1.4. The bistar $B_{m,n}$ is the graph obtained by attaching the apex vertices of two copies of star $K_{1,m}$ by an edge.

Definition 1.5. The corona $G_1 \circ G_2$ of two graphs G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 (with p_i vertices) and p_i copies of G_2 and then joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2. The graph $P_n \circ K_1$ is called a Comb. The graph $C_n \circ K_1$ is called a Crown.

Definition 1.6. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^n = e$. We denote the order of a by $o(a)$.

In this paper, we prove that path, cycle, star, bistar, complete bipartite, wheel, fan, comb and crown graphs admit a group S_3 cordial remainder labeling.

III. MAIN RESULTS

Definition 2.1. Consider the symmetric group S_3. Let the elements of S_3 be e, a, b, c, d, f where

$e = (1 2 3) \quad a = (1 2 3) \quad b = (1 2 3)
(1 2 3) \quad c = (1 2 3) \quad d = (1 2 3) \quad f = (1 2 3)$

We have $o(e) = 1, o(a) = o(b) = o(c) = 2, o(d) = o(f) = 3$.

Definition 2.2. Let $G = (V(G), E(G))$ be a graph and let $g : V(G) \rightarrow S_3$ be a function. For each edge xy assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_3 cordial remainder labeling of G if $|v_g(x) - v_g(y)| \leq 1$ and $|e_g(0) - e_g(1)| \leq 1$, where $v_g(x)$ denotes the number of vertices labeled with x and $e_g(i)$ denotes the number of edges labeled with i ($i = 0, 1$). A graph G which admits a group S_3 cordial remainder labeling is called a group S_3 cordial remainder graph.

Theorem 2.3. Path P_n is a group S_3 cordial remainder graph.
Group S_3 Cordial Remainder Labeling

Proof. Let $v_1,v_2,...,v_n$ denote the vertices of P_n. Fig. 1 gives a group S_3 cordial remainder labeling of P_n for $n \leq 5$.

![Diagram of path P_n for $n \leq 5$.](image)

Clearly, $|v(i)-v(j)| \leq 1$ for $i,j \in S_3$ and $|e_g(0)-e_g(1)| \leq 1$. Hence g is a group S_3 cordial remainder labeling.

Case 4. $n=3$ (mod 6).

Let $n=6k+3$ and $k \geq 1$. Assign the label to the vertices v_i for $1 \leq i \leq 6k$ as in Case (1) and for the remaining vertices assign the following labels:

$$g(v_i) = \begin{cases} a & \text{if } i = 6k+1 \\ b & \text{if } i = 6k+2 \\ f & \text{if } i = 6k+3 \end{cases}$$

Here $v_g(a) = v_g(b) = v_g(c) = v_g(d) = v_g(e) = v_g(f) = k$ and $e_g(0) = e_g(1) = 3k+2$. Clearly $|v_g(i)-v_g(j)| \leq 1$ for $i,j \in S_3$ and $|e_g(0)-e_g(1)| \leq 1$. Hence g is a group S_3 cordial remainder labeling.

Case 5. $n=2$ (mod 6).

Let $n=6k+2$ and $k \geq 1$. Assign the label to the vertices v_i for $1 \leq i \leq 6k$ as in the Case (1) and for the remaining vertices assign the following labels:

$$g(v_i) = \begin{cases} a & \text{if } i = 6k+1 \\ f & \text{if } i = 6k+2 \end{cases}$$

Here $v_g(a) = v_g(b) = v_g(c) = v_g(d) = v_g(e) = v_g(f) = k$ and $e_g(0) = e_g(1) = 3k+3$. Therefore $|v_g(i)-v_g(j)| \leq 1$ for $i,j \in S_3$ and $|e_g(0)-e_g(1)| \leq 1$. Hence g is a group S_3 cordial remainder labeling.

Case 6. $n=1$ (mod 6).

Let $n=6k+1$ and $k \geq 1$. Assign the label to the vertices v_i for $1 \leq i \leq 6k$ as in the Case (1) and $g(v_{6k+1}) = a$. Here $v_g(a) = v_g(b) = v_g(c) = v_g(d) = v_g(e) = v_g(f) = k$ and $e_g(0) = e_g(1) = 3k$. Therefore $|v_g(i)-v_g(j)| \leq 1$ for $i,j \in S_3$ and $|e_g(0)-e_g(1)| \leq 1$. Hence g is a group S_3 cordial remainder labeling.

Hence path P_n is a group S_3 cordial remainder graph. □

Theorem 2.4. Cycle C_n is a group S_3 cordial remainder graph.

Proof. Let $v_1,v_2,...,v_n$ denote the vertices of C_n. The same labeling pattern is followed as in Theorem 2.3, except for $n=2$ (mod 6).

Suppose $n=2$ (mod 6). Define a function $g : V(C_n) \rightarrow S_3$ as follows. Let $n=6k+2$ and $k \geq 1$.
\[g(v_j) = \begin{cases}
 a & \text{if } i = 1 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 b & \text{if } i = 2 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 c & \text{if } i = 3 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 d & \text{if } i = 4 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 e & \text{if } i = 5 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 f & \text{if } i = 6k + 1 \\
 a & \text{if } i = 6k + 2
\end{cases} \]

Here \(v_j(a) = v_j(f) = k + 1 \), \(v_j(b) = v_j(c) = v_j(d) = v_j(e) = k \) and \(e_j(0) = e_j(1) = 3k + 1 \). Therefore \(|v_j(i) - v_j(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_j(0) - e_j(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Hence cycle \(C_n \) is a group \(S_3 \) cordial remainder graph. □

Theorem 2.5. Star \(K_{1,n} \) is a group \(S_3 \) cordial remainder graph for every \(n \).

Proof. Let \(v \) be the apex vertex and \(v_1, v_2, \ldots, v_n \) be the pendant vertices of \(K_{1,n} \). Then \(K_{1,n} \) is of order \(n+1 \) and size \(n \). We define \(g : V(K_{1,n}) \rightarrow S_3 \) as follows:

\[g(v) = d ; \]

\[g(v_j) = \begin{cases}
 a & \text{if } i = 1 \pmod{6} \text{ and } 1 \leq i \leq n \\
 e & \text{if } i = 2 \pmod{6} \text{ and } 1 \leq i \leq n \\
 b & \text{if } i = 3 \pmod{6} \text{ and } 1 \leq i \leq n \\
 f & \text{if } i = 4 \pmod{6} \text{ and } 1 \leq i \leq n \\
 c & \text{if } i = 5 \pmod{6} \text{ and } 1 \leq i \leq n \\
 d & \text{if } i = 0 \pmod{6} \text{ and } 1 \leq i \leq n .
\end{cases} \]

It is easy to verify that \(|v_j(i) - v_j(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_j(0) - e_j(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling. □

Theorem 2.6. Bistar \(B_{n,n} \) is a group \(S_3 \) cordial remainder graph for every \(n \).

Proof. Let \(v \) and \(u \) be the apex vertices and \(v_1, v_2, \ldots, u_1, u_2, \ldots, u_n \) be the pendant vertices of \(K_{1,n} \). Then \(B_{n,n} \) is of order \(2n+2 \) and size \(2n+1 \). We define \(g : V(B_{n,n}) \rightarrow S_3 \) as follows:

\[g(u) = a ; g(u_1) = b ; g(u_2) = f ; \]

\[g(v) = d ; g(v_1) = c ; g(v_2) = e ; \]

\[g(u_j) = \begin{cases}
 e & \text{if } i = 0 \pmod{3} \text{ and } 3 \leq i \leq n \\
 d & \text{if } i = 1 \pmod{3} \text{ and } 3 \leq i \leq n \\
 b & \text{if } i = 2 \pmod{3} \text{ and } 3 \leq i \leq n ; \\
 a & \text{if } i = 0 \pmod{3} \text{ and } 3 \leq i \leq n \\
 f & \text{if } i = 1 \pmod{3} \text{ and } 3 \leq i \leq n \\
 c & \text{if } i = 2 \pmod{3} \text{ and } 3 \leq i \leq n .
\end{cases} \]

From Table - I, it is clear that \(g \) is a group \(S_3 \) cordial remainder labeling.

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_g(a))</th>
<th>(v_g(b))</th>
<th>(v_g(c))</th>
<th>(v_g(d))</th>
<th>(v_g(e))</th>
<th>(v_g(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(3k) ((k \geq 1))</td>
<td>(k+1)</td>
<td>(k)</td>
<td>(k)</td>
<td>(k)</td>
<td>(k+1)</td>
<td>(k)</td>
</tr>
<tr>
<td>(3k+1) ((k \geq 1))</td>
<td>(k+1)</td>
<td>(k)</td>
<td>(k)</td>
<td>(k+1)</td>
<td>(k+1)</td>
<td>(k+1)</td>
</tr>
<tr>
<td>(3k+2) ((k \geq 1))</td>
<td>(k+1)</td>
</tr>
</tbody>
</table>

Hence bistar \(B_{n,n} \) is a group \(S_3 \) cordial remainder graph. □

Theorem 2.7. Wheel \(W_n \) is a group \(S_3 \) cordial remainder graph for \(n \geq 3 \).

Proof. Let \(W_n \) be the wheel \(C_n + K_1 \). Let \(u \) be the apex of the wheel and \(u_1, u_2, \ldots, u_n \) be the vertices on the cycle \(C_n \).

Case 1. \(n = 3 \).

Define \(g \) by \(g(u) = d, g(u_1) = a, g(u_2) = b \) and \(g(u_3) = c \).

It is easy to verify that \(|v_g(i) - v_g(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_g(0) - e_g(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Case 2. \(n = 4 \).

Define \(g \) by \(g(u) = d, g(u_1) = a, g(u_2) = f, g(u_3) = b \) and \(g(u_4) = e \).

It is easy to verify that \(|v_g(i) - v_g(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_g(0) - e_g(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Case 3. \(n = 5 \).

Define \(g \) by \(g(u) = d, g(u_1) = a, g(u_2) = b, g(u_3) = f, g(u_4) = c \) and \(g(u_5) = e \).

It is easy to verify that \(|v_g(i) - v_g(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_g(0) - e_g(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Case 4. \(n \geq 6 \). Define \(g : V(W_n) \rightarrow S_3 \) as follows.

Subcase (i). \(n = 0 \pmod{6} \).

Let \(n = 6k \) and \(k \geq 1 \).

\[g(u) = d ; \]

\[g(v) = \begin{cases}
 a & \text{if } i = 1 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 d & \text{if } i = 2 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 b & \text{if } i = 3 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 c & \text{if } i = 4 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 f & \text{if } i = 5 \pmod{6} \text{ and } 1 \leq i \leq 6k \\
 e & \text{if } i = 0 \pmod{6} \text{ and } 1 \leq i \leq 6k .
\end{cases} \]

Here \(v_g(a) = v_g(b) = v_g(c) = v_g(d) = v_g(e) = v_g(f) = k \), \(v_g(d) = k+1 \) and \(e_g(0) = e_g(1) = 6k \). Therefore \(|v_g(i) - v_g(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_g(0) - e_g(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Subcase (ii). \(n = 5 \pmod{6} \).
Let \(n = 6k + 5 \) and \(k \geq 1 \). Assign the label to the vertices \(u \) and \(u_i \) for \(1 \leq i \leq 6k \) as in Subcase (i) and for the remaining vertices assign the following labels:

\[
g(u_i) = \begin{cases}
 a & \text{if } i = 6k+1 \\
 b & \text{if } i = 6k+2 \\
 f & \text{if } i = 6k+3 \\
 c & \text{if } i = 6k+4 \\
 e & \text{if } i = 6k+5.
\end{cases}
\]

Here \(v_x(a) = v_x(b) = v_x(c) = v_x(d) = v_x(e) = v_x(f) = k+1 \) and \(e_x(0) = e_x(1) = 6k+5 \). Clearly \(|v_x(i)-v_x(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_x(0)-e_x(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Subcase (iii). \(n = 4 \mod 6 \).

Let \(n = 6k + 4 \) and \(k \geq 1 \). Assign the label to the vertices \(u \) and \(u_i \) for \(1 \leq i \leq 6k \) as in Subcase (i) and for the remaining vertices assign the following labels:

\[
g(u_i) = \begin{cases}
 a & \text{if } i = 6k+1 \\
 b & \text{if } i = 6k+2 \\
 f & \text{if } i = 6k+3 \\
 c & \text{if } i = 6k+4.
\end{cases}
\]

Here \(v_x(a) = v_x(b) = v_x(c) = v_x(d) = k+1, v_x(e) = v_x(f) = k \) and \(e_x(0) = e_x(1) = 6k+4 \). Clearly \(|v_x(i)-v_x(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_x(0)-e_x(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Subcase (iv). \(n = 3 \mod 6 \).

Let \(n = 6k + 3 \) and \(k \geq 1 \). Assign the label to the vertices \(u \) and \(u_i \) for \(1 \leq i \leq 6k \) as in Subcase (i) and for the remaining vertices assign the following labels:

\[
g(u_i) = \begin{cases}
 a & \text{if } i = 6k+1 \\
 b & \text{if } i = 6k+2 \\
 c & \text{if } i = 6k+3.
\end{cases}
\]

Here \(v_x(a) = v_x(b) = v_x(c) = v_x(d) = k+1 \), \(v_x(e) = v_x(f) = k \) and \(e_x(0) = e_x(1) = 6k+3 \). Clearly \(|v_x(i)-v_x(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_x(0)-e_x(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Case 5. \(n = 2 \mod 6 \).

Let \(n = 6k + 2 \) and \(k \geq 1 \). Assign the label to the vertices \(u \) and \(u_i \) for \(1 \leq i \leq 6k \) as in Subcase (i) and for the remaining vertices assign the following labels:

\[
g(u_i) = \begin{cases}
 f & \text{if } i = 6k+1 \\
 a & \text{if } i = 6k+2.
\end{cases}
\]

Here \(v_x(a) = v_x(b) = v_x(c) = v_x(d) = k+1 \), \(v_x(e) = v_x(f) = k \) and \(e_x(0) = e_x(1) = 6k+2 \). Therefore \(|v_x(i)-v_x(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_x(0)-e_x(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling.

Case 6. \(n = 1 \mod 6 \).

Let \(n = 6k + 1 \) and \(k \geq 1 \). Assign the label to the vertices \(u \) and \(u_i \) for \(1 \leq i \leq 6k \) as in Subcase (i) and \(g(u_{6k+1}) = f \). Here \(v_x(a) = v_x(b) = v_x(c) = v_x(e) = k \), \(v_x(d) = v_x(f) = k+1 \) and \(e_x(0) = e_x(1) = 6k+1 \). Therefore \(|v_x(i)-v_x(j)| \leq 1 \) for \(i, j \in S_3 \) and \(|e_x(0)-e_x(1)| \leq 1 \). Hence \(g \) is a group \(S_3 \) cordial remainder labeling of \(K_{2,n} \), if \(n = 0 \mod 6 \).

Theorem 2.9. The complete bipartite graph \(K_{2,n} \) is a group \(S_3 \) cordial remainder graph if and only if \(n = 1, 2, 3, 4 \) or \(n = 0 \mod 6 \).

Proof. Let \(V_1, V_2 \) be the bipartition of \(K_{2,n} \) with \(V_1 = \{v_1, v_2\} \) and \(V_2 = \{u_1, u_2, ..., u_n\} \).

Suppose \(n = 1, 2, 3 \) or 4. Table - II gives a group \(S_3 \) cordial remainder labeling of \(K_{2,n} \) for \(1 \leq i \leq 4 \).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a)</td>
<td>(e)</td>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(a)</td>
<td>(e)</td>
<td>(d)</td>
<td>(f)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(d)</td>
<td>(e)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

Suppose \(n = 0 \mod 6 \). Let \(n = 6k \) and \(k \geq 1 \). Define \(g : V(K_{2,n}) \rightarrow S_3 \) as follows.

\[
g(v_i) = d; \quad g(v_1) = f;
\]

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a)</td>
<td>(i = 1 \mod 6)</td>
<td>(1 \leq i \leq 6k)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(b)</td>
<td>(i = 2 \mod 6)</td>
<td>(1 \leq i \leq 6k)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(c)</td>
<td>(i = 3 \mod 6)</td>
<td>(1 \leq i \leq 6k)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(d)</td>
<td>(i = 4 \mod 6)</td>
<td>(1 \leq i \leq 6k)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(e)</td>
<td>(i = 5 \mod 6)</td>
<td>(1 \leq i \leq 6k)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(f)</td>
<td>(i = 0 \mod 6)</td>
<td>(1 \leq i \leq 6k)</td>
<td></td>
</tr>
</tbody>
</table>

Hence \(g \) is a group \(S_3 \) cordial remainder labeling of \(K_{2,n} \) if \(n = 0 \mod 6 \).
Conversely, assume that the complete bipartite graph $K_{2,n}$ is a group S_3 cordial remainder graph. Let g be a group S_3 cordial remainder labeling of $K_{2,n}$.

Case 1. $g(v_1) = e$ or $g(v_2) = e$.

Without loss of generality, let $g(v_1) = e$. The n edges incident with v_1 get label 0. So the remaining n edges should get label 1. If $g(v_2) = d$, then only a, b and c can be used to label the remaining vertices. Hence $n = 3$. If $g(v_2) = a$, then only d and f can be used to label the remaining vertices. Hence $n = 2$. If $g(v_2) = a$, then only d can be used to label the remaining vertices. Hence $n = 1$.

Case 2. $g(v_i) ≠ e$ for $i = 1, 2$.

It is enough to consider the following subcases.

Subcase (i). $g(v_1) = d, g(v_2) = f$.

Assign labels d, e, f to any three vertices. We get six edges with label 0. Next we assign labels a, b, c to another set of three vertices and in this process we get six edges with label 1. Thus for $n = 0 \pmod{6}$, we assign the labels d, e, f for every 3 vertices and we need 3 vertices with labels a, b, c. Hence $n = 0 \pmod{6}$.

Subcase (ii). $g(v_1) = a, g(v_2) = b$.

Assign labels e, c to any two vertices. We get four edges with label 0. Next we assign labels d, f to another set of two vertices and in this process we get four edges with label 1. Hence $n = 4$.

Subcase (iii). $g(v_1) = d, g(v_2) = a$.

Assign the label e to a vertex. We get 2 edges with label 0. Vertices with every other label give one edge with label 0 and another edge with label 1. So, $|e_0(0) - e_1(1)| > 1$. Hence this is impossible. □

Theorem 2.10. The comb $P_n \circ K_1$ is a group S_3 cordial remainder graph for every n.

Proof. Let $V(P_n \circ K_1) = \{u_i, v_i : 1 \leq i \leq n\}$ and $E(P_n \circ K_1) = \{u_{i+1}, v_i : 1 \leq i \leq n-1\} \cup \{u_1, v_{n} : 1 \leq i \leq n\}$. Then $P_n \circ K_1$ is of order $2n$ and size $2n - 1$.

Define $f : V(P_n \circ K_1) \to S_3$ as follows:

$g(u_i) = \begin{cases}
 a & \text{if } i = 1 \pmod{6} \\
 b & \text{if } i = 2 \pmod{6} \\
 d & \text{if } i = 3 \pmod{6} \\
 c & \text{if } i = 4 \pmod{6} \\
 e & \text{if } i = 5 \pmod{6} \\
 f & \text{if } i = 0 \pmod{6}
\end{cases}$

From Table III, it is clear that g is a group S_3 cordial remainder labeling. Hence comb is a group S_3 cordial remainder graph. □

Corollary 2.11. The crown $C_n \circ K_1$ is a group S_3 cordial remainder graph for every n.

Proof. Let $V(C_n \circ K_1) = \{u_i, v_i : 1 \leq i \leq n\}$ where $u_1, u_2, ..., u_n$ are the vertices of the cycle and $v_1, v_2, ..., v_n$ are the pendant vertices adjacent to $u_1, u_2, ..., u_n$ respectively.

Assign the labels to the vertices u_i and v_i as in the Theorem 2.10, except by interchanging the labels of the vertices v_i and v_j for $n = 1, 2, 5 \pmod{6}$. It is easy to verify that $|v_g(i) - v_g(f)| \leq 1$ for $i, j \in S_1$ and $|e_g(0) - e_g(1)| \leq 1$.

Hence g is a group S_3 cordial remainder labeling. □

Theorem 2.12. Let g be a group S_3 cordial remainder labeling of a graph G_1 of order $6m$ and size $2n$ and let h be any group S_1 cordial remainder labeling of a graph G_2. Then $G_1 \cup G_2$ is also a group S_3 cordial remainder graph.

Proof. Let g, h be a group S_3 cordial remainder labeling of G_1 and G_2 respectively. Since G_1 has $6m$ vertices and $2n$ edges, we have $v_g(a) = v_g(b) = v_g(c) = v_g(d) = v_g(e) = v_g(f) = m$ and $e_g(0) = e_g(1) = n$. We define a vertex labeling l of $G_1 \cup G_2$ such that

$l(u) = \begin{cases}
 g(u) & \text{if } u \in V(G_1) \\
 h(u) & \text{if } u \in V(G_2).
\end{cases}$

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_g(a)$</th>
<th>$v_g(b)$</th>
<th>$v_g(c)$</th>
<th>$v_g(d)$</th>
<th>$v_g(e)$</th>
<th>$v_g(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6k - 5$ ($k \geq 1$)</td>
<td>$2k - 1$</td>
<td>$2k - 2$</td>
<td>$2k - 1$</td>
<td>$2k - 2$</td>
<td>$2k - 2$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$6k - 4$ ($k \geq 1$)</td>
<td>$2k - 1$</td>
<td>$2k - 1$</td>
<td>$2k - 1$</td>
<td>$2k - 2$</td>
<td>$2k - 2$</td>
<td>$2k - 1$</td>
</tr>
<tr>
<td>$6k - 3$ ($k \geq 1$)</td>
<td>$2k - 1$</td>
</tr>
<tr>
<td>$6k - 2$ ($k \geq 1$)</td>
<td>$2k - 1$</td>
<td>$2k - 1$</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k - 1$</td>
<td>$2k - 1$</td>
</tr>
<tr>
<td>$6k - 1$ ($k \geq 1$)</td>
<td>$2k - 1$</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k - 1$</td>
<td>$2k - 1$</td>
</tr>
<tr>
<td>$6k$ ($k \geq 1$)</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k$</td>
<td>$2k$</td>
</tr>
</tbody>
</table>

\[\text{Table III: Comb graph}\]
Hence, \(v_i(i) = v_g(i) + v_h(i) \) for \(i \in S_3 \) and \\
\(e_i(i) = e_g(i) + e_h(i) \) for \(i = 0,1 \). Therefore \(|v_i(i) - v_j(j)| \leq 1 \) \\
for \(i, j \in S_3 \) and \(|e_i(0) - e_j(1)| \leq 1 \). Hence \(I \) is a group \(S_3 \)

cordial remainder labeling. Thus \(G_1 \cup G_2 \) is also a group \(S_3 \)
cordial remainder graph. □

IV. CONCLUSION

Labeled graphs serve as useful models for a broad range of
applications such as: coding theory, radar, astronomy, circuit
design and communication network. In this paper, we have
introduced the concept of group \(S_3 \) cordial remainder
labeling. Researchers can explore the possibility of applying
this concept to the above mentioned areas. We have proved
that path, cycle, star, bistar, complete bipartite, wheel, fan,
comb and crown graphs are group \(S_3 \) cordial remainder
graphs.

REFERENCES

1. I. Cahit, “Cordial graphs: A weaker version of graceful and harmonious
2. B. Chandra and R. Kala, “Group \(S_3 \) cordial prime labeling of graphs”
Combin., vol. 21, 2018, # DS6.
5. R. Ponraj, K. Annathurai and R. Kala, “Remainder Cordial Labeling of
pp. 17-30.
6. A. Rosa, “On certain valuations of the vertices of a graph”, Theory of
Graphs (Rome, July 1966), Gordon and Breach, N. Y. and Paris, 1967,
pp. 349-355.

AUTHORS PROFILE

A. Lourdusamy received M.Sc. from St.Joseph’s
College, Trichy, India (affiliated to Bharathidasan
University, Trichy) and Ph.D at Manonmaniam
Sundaranar University, Tirunelveli in India. His Ph.D.
was in Graph Theory. At present he is an Associate
Professor and IQAC Coordinator of St.Xavier’s College, Palayamkottai.
Since 1986 he has served many colleges in Tamil Nadu as assistant
professor. He has published 80 publications in National/ International
Journals so far. He is also reviewer for Math Review (American Mathematical
Society) and ZtMath (European Mathematical Society).

S. Jenifer Wency, M.Sc., B.Ed., M.Phil., is pursuing
Ph.D. at Manonmaniam Sundaranar University under the
guidance of Dr. A. Lourdusamy. Her area of interest is
Graph Theory.

Dr. F. Patrick, M.Sc., B.Ed., M.Phil., Ph.D., has
published 19 publications in National and International
Journals so far. His area of interest is Graph Theory.