Implementation of the Positioning of an Improved WSN Particle Swarm Optimization in Node Ranging

M. Rambabu Naik, Shaik Khamuruddeen, C. Arunabala, K Siva Naga Narasingarao

Abstract: The proposal aims mainly improves the particle swarm optimization of wireless sensor network node positioning in received signal strength intensity (RSSI) ranging. A algorithms is proposed for the existence of local convergence which has significant changes in the effects of convergence speed and stability analysis. It is an algorithm to solve the problem of multi-objective combination optimization, and it is widely used due to less parameters and being easy to be realized. And its basic idea is to compare individuals in the space to particles without quality and volume. The dynamic disturbance factors are introduced to reduce the speed of local convergence and penalty function is introduced, thereby limiting the search range of feasible solutions and avoid consuming time in ineffective solution space.

Keywords: WSN, dynamic disturbance factor, penalty function

I. INTRODUCTION

The integration of data information acquisition, data fusion and data transmission of wireless network’s information set has extensive prospect in emergency rescue and disaster relief, urban traffic congestion management and industrial production, etc. [1] Node positioning in wireless sensor network is of vital importance. Therefore, it has always been the focus of research in the field of wireless sensor network to improve the accuracy of node positioning in sensors.[2] Aiming at the node positioning of wireless sensor network, both domestic and foreign scholars have conducted a lot of research, mainly based on ranging and ranging-free methods. The main representative methods include Received Signal Strength Indication (RSSI), Time of Arrival (TOA), Time Difference of Arrival (TDOA), and Angle of Arrival (AOA), etc. [3–4] Ranging-free algorithms mainly include centroid method and DV-Hop etc. [5–7] The RSSI ranging method is the most widely used based ranging method, and aiming at its relatively low positioning accuracy, numerous scholars have improved it. In Literature [8], positioning algorithm RMDV-Hop based on modified WSN of RSSI (RSSI Modified DV-Hop), and this algorithm limits the maximum transmission hops and uses the RSSI value to modify the transmission value of anchor nodes with one hop. The positioning accuracy and stability of improved algorithm have improved significantly compared with that of the original algorithm. In literature [9], the RSSI distance ratio is used to calculate the distance matrix between nodes combined with the Euclidean ranging technology.

Revised Manuscript Received on November 15, 2019

Dr. M. Rambabu Naik, Associate Professor, Department of ECE, KKR & KSR Institute Of Technology & Sciences (KITS), Guntur.

Dr. Shaik Khamuruddeen, Associate Professor, Department of ECE, KKR & KSR Institute Of Technology & Sciences (KITS), Guntur.

Dr. C. Arunabala, Professor, Department of ECE, KKR & KSR Institute Of Technology & Sciences (KITS), Guntur.

Mr. K Siva Naga Narasingarao, Assistant Professor, Department of ECE, KKR & KSR Institute Of Technology & Sciences (KITS), Guntur.

Because the hardware structure in wireless sensor is comparatively simple, so is the RSSI ranging technology. And extra complicated hardware equipment is not needed. Therefore, it is very suitable for wireless sensor network nodes. In the RSSI ranging, it measures the power of signals received at the place of receiving nodes so as to estimate the signal loss during transmission, whereby covert the power loss during transmission to the distance between two nodes. It is shown as follows:

\[P(x) = P_G G^2 \lambda^2 L \]

Black Diagram of Particle Swarm Optimization

Where,

- \(P(x) \) is the signal received at the place of receiving nodes,
- \(P_G \) is the power of transmitted signal,
- \(G \) is the gain of antenna,
- \(\lambda \) is the wavelength of the transmitted signal,
- \(L \) is the distance between the transmitter and the receiver,
- \(\lambda \) is the wavelength of the transmitted signal.
In the formula, $P(x)$ refers to the accepted power x between nodes sending signals, P refers to the power of nodes sending signals, G_T refers to the transmission gain of sending node, and G_r refers to the transmission of receiving node. L refers to loss constant, and Δ refers to the length of wave transmitting signals. Through formula (1), the actual distance between each node and node that sends signals. However, due to the influence of external interference factors like terrain, there may be great loss of power during the transmission of node signals. Thus, it is more difficult to determine the positions of unknown nodes, easily resulting in deviation during the transmission of signals, thus requiring more accurate positioning of the algorithm.

Algorithm

Particle Swarm Algorithm

It is an algorithm to solve the problem of multi-objective combination optimization, and it is widely used due to less parameters and being easy to be realized. And its basic idea is to compare individuals in the space to particles without parameters and being easy to be realized. And its basic idea is to compare individuals in the space to particles without parameters and being easy to be realized. It is an algorithm to solve the problem of multi-objective combination optimization, and it is widely used due to less parameters and being easy to be realized. The algorithm is described as follows: the i^{th} particle is $x_i = \{x_{i1}, x_{i2}\}$.

$$v_{i}(t+1) = w \times v_{i}(t) + c_1 \times \text{rand}(t) \times (p_{best} - x_{i}(t)) + c_2 \times \text{rand}(t) \times (g_{best} - x_{i}(t)) \tag{2}$$

$$x_{i}(t+1) = x_{i}(t) + v_{i}(t+1) \tag{3}$$

Here, w refers to inertia weight, mainly used for iterative linear change. c_1 and c_2 are constants, controlling the individual’s optimum position and the global optimum position respectively. It is beneficial for the algorithm to find its optimum and improve its convergence speed. rand(t) is a random number, valued between (0,1). For each particle, the individual’s optimum position P_i and the global optimum position are shown with the following formulas respectively:

$$P_{i}^{best} = \{P_{i1}^{best}, P_{i2}^{best}\} \tag{4}$$

$$P_i = f(X_i) \Rightarrow \min[f(P_i)] \tag{5}$$

II. PROPOSED METHODOLOGY

Improved Particle Swarm Algorithm in Node Positioning Introducing Dynamic Disturbance Factors

The process of current particle swarm algorithm optimization is making changes to the algorithm’s parameters, that is, improving c_1 and c_2 in Formula (2) and Formula (3). It has been proven in literature [25] that there is absolute no relationship between the evolution of particles in the particle swarm algorithm and the speed of particles. Therefore, the Formula (3) is changed as follows:

$$x_{i}(t+1) = w \times v_{i}(t) + c_1 \times \text{rand}(t) \times (p_{best} - x_{i}(t)) + c_2 \times \text{rand}(t) \times (g_{best} - x_{i}(t)) \tag{6}$$

However, it can be found in Formula (4) that although this position is changed, the convergence may still reach its local optimum. Therefore, stagnation may be produced. In order to solve this stagnation problem, disturbance factor is introduced in this paper. When the algorithm stops, disturbance factors may be used to interfere with individual’s optimal solutions and the global optimal solution respectively, thus making the algorithm stay far away from the stagnation region. The disturbance factors are shown as follows:

$$P_{i}^{best} = P_{i1}^{best} \Rightarrow \min[f(P_i)] \tag{7}$$

$$P_{i}^{best} = P_{i2}^{best} \Rightarrow \min[f(P_i)] \tag{8}$$

In the formula, t_p and T_p represent the stagnation step number of individual’s optimal value and the threshold of individual optimal value’s stagnation pace needing to be interfered with respectively. And t_p and T_p represent stagnation step number of global optimal value and the threshold of global optimal value’s stagnation pace needing to be interfered with respectively. When the stagnation number and threshold are reached, the algorithm is interfered with. Therefore, the position adjustment equation to Formula (6) is as follows:

$$x_{i}(t+1) = w \times x_{i}(t) + c_1 \times \text{rand}(t) \times (p_{best} - x_{i}(t)) + c_2 \times \text{rand}(t) \times (g_{best} - x_{i}(t)) \tag{9}$$

It can be found in Formula (7) that when t_p \neq T_p, the algorithm t_q \neq T_q is stagnated and after the local optimal value is already converged, the current individual extreme value and global extreme value are disturbed with some certain lag. Secondly, after the algorithm is converged to local optimal value, it can still be implemented through disturbance factors. However, chances are that it is converged from one local optimum to another local convergence until it has gone through all the local optimum. When comparing the global optimum, the algorithm is converged, reducing the algorithm’s effectiveness. The algorithm is related with the iteration number, so in order to overcome the low efficiency of algorithm, dynamic factors are introduced based on disturbance factors, which is as follows:
Herein, d_1 are d_2 dynamic factors aiming at individual local optimum and individual global optimum respectively. Set k as the number of iteration, and k_{min} and k_{max} the minimum and maximum iteration numbers respectively. Previously, stagnation might be caused to the algorithm due to local convergence, so dynamic factors are added to make sure that the algorithm will not fall into stagnation due to local optimum. At the beginning stage, there is great influence and weight of the algorithm, global search is adopted mainly. And with the constant change of particle’s speed and location, local search is carried out gradually. At this time, interference is carried out by constantly improving dynamic interference factors to prevent the algorithm’s local convergence. Therefore, the combination of these two can obviously improve the algorithm’s efficiency. It is shown as follows:

$$d^1 = \begin{cases} \text{rand}() & k < k_{\text{min}} \\ \text{rand}() & \text{else} \end{cases}$$ (10)

$$d^2 = \begin{cases} \text{rand}() & k < k_{\text{min}} \\ \text{rand}() & \text{else} \end{cases}$$ (11)

Representation of Penalty Function
There may be some shadow areas of research in the search zone to some extent. Therefore, in order to reduce the search range of the optimum solutions and reduce unnecessary search time, penalty function is introduced to convert the unconstrained particle movement into feasible solution with constraints. When the particles meet the constraints, the value of penalty function will be small, and then the particles do not meet the constraints, the value of penalty function will large so as reduce the fitness of particle’s target function’s value, guide the particles stay away from the feasible region so as to reduce the time of approaching the optimal solutions. The penalty expression is shown as Formula (14):

$$F(x,M) = f(x) + M \sum_{i=1}^{w} \min(0,g_i(x))$$ (14)

Suppose $f(x)$ is the target function, then the minimized result is to keep the minimum of target function and use A to represent the set of feasible solutions. Therefore, herein $\min f(x)$, $x \in A$, $A = \{x \mid g_i(x) \leq 0 \forall i \in 1,2,\ldots,m\}$, herein, m is the range of constraints. Therefore, $g_i(x) \leq 0 \forall i \in 1,2,\ldots,m$ is converted into $\min g_i(x)$, M is the penalty factor, and $F(x,M)$ is the penalty function> When the feasible solutions meet the constraint conditions, the value of $g_i(x)$ is small, and vice versa so as to give big penalty and convert the constraint problem into unconstrained optimization problem $\min F(x,M)$.

Algorithm Description of the Algorithm
Step 1: Set the population size, the parameter penalty factor M as 0.5. And set the maximum and minimum value of inertia weight c_1, the maximum iteration times and learning factor c_2.
Step 2: Through the modification parameter of ranging error to carry out the constraint condition of feasible solutions and generate penalty function at the same time.
Step 3: Initialize the particle swarm algorithm and the position of feasible solutions at random.
Step 4: Initialize the value of each feasible solution’s fitness, choose the particle’s initial value as the individual extreme value P_i, and mean while choose P_g.
Step 5: Add one more time to the iteration time, and calculate the location of next feasible solution according to Formula (8).
Step 6: Calculate the fitness of a new generation of feasible solutions. Renew the position of individual’s optimal solution and compare each particle’s individual fitness and the individual’s optimal solution P_i that has been searched. If the comparison result is small, it indicates that the current position is better, so then renew P_g. Otherwise, keep it unchanged. Renew the global optimum solution, and compare all the particles’ optimal value P_i and the global optimal value P_g. If the result is small, then renew the global extreme value of the entire particle swarm. Otherwise, keep it unchanged.
Step 7: Judge whether the maximum iteration times have been reached, if so, finish the positioning. Otherwise, continue implementing Step 5.
Implementation of the Positioning of an Improved WSN Particle Swarm Optimization in Node Ranging

III. RESULT ANALYSIS
With the Windows xp, Core i3 as the CPU, 4GDDR3 as the memory and Matlab2010 as the simulation software, the comparison in this paper is carried out in two aspects: one is through the comparison with basic particle swarm algorithm and reference literature algorithm; another is through the comparison with the maximum likelihood value, motion estimation and maximum likelihood algorithm. The author analyzes the convergence speed of algorithm in this paper and the effect of stability analysis.

Set the nodes are distributed randomly at the 100m×100m two-dimensional plane. The location of nodes is distributed at random and anchor nodes are chosen at random. For the same environmental location, set the simulation times as 100, the size of particle swarm as N=50 and the iteration times as 50. Meanwhile, set the penalty factor M as 0.5, learning factors c_1 and c_2 are 2, and the maximum and minimum value of inertia function ω are 1 and 0.1 respectively. The average location $\overline{AF}=E[(x_1-x_2)^2+(y_1-y_2)^2]$ error $MSE=E[(x_1-x)^2+(y_1-y)^2]$, and positioning error variance are chosen as the standard to evaluate the positioning performance. (x_1, y_1) is the estimated position of nodes and (x_2, y_2) is the actual position.

IV. CONVERGENCE OF ALGORITHM
In order to further compare the convergence of algorithm in this paper, algorithm in this paper, basic PSO algorithm, Literature [8] and Literature [11] are chosen to make comparison. And the comparison results are shown as follows:

![Figure 1. Convergence of Positioning Algorithm’s Convergence Value](image)

It can be found from this figure that compared with other three algorithms, algorithm in this paper is more efficient mainly because speed is not considered in algorithm in this paper so as to avoid the slow convergence speed of the algorithm. Besides, disturbance factors are added to the algorithm, reducing the convergence speed of the algorithm and making it better for the algorithm to find its global optimal solution, thus further improving the stability of the algorithm.

V. COMPARISON OF POSITIONING ERROR OF ESTIMATION ALGORITHM
In this part, algorithm in this paper is compared with motion estimation algorithm, maximum likelihood algorithm and extreme likelihood algorithm, and the results are as shown in Figure 2:

![Figure 2. Comparison of Positioning Error](image)

It can be found in Fig.2 that algorithm in this paper is superior to the several estimation aspects in positioning error, which is because disturbance factors are introduced to the algorithm to improve the efficiency of local search and avoid taking local optimum as the global optimum and finally provide the global optimal solution to the algorithm. Modification is made aiming at the specific error to restrict the probable range of node positioning, narrow the search range and improve the positioning effect.

VI. CONCLUSION
Ranging errors are a problem that cannot be ignored. With the different ranging distance, the ranging error of both algorithm in this paper and other algorithms is increasing. However, under different ranging conditions, the average error of positioning algorithm in this paper is less than that of algorithm in the reference, which indicates that algorithm in this paper has more accuracy and less error fluctuation of positioning accuracy. This shows that algorithm in this paper has great error resistance, thus demonstrating relatively better positioning performance. it is as shown in Fig.3:

![Figure 3. Average Positioning Error](image)

REFERENCES

AUTHORS

Dr. M. Rambabu Naik, M. Tech, PhD
He is having 14 years of teaching experience. Presently he is working as Associate Professor in Department of ECE, KKR & KSR INSTITUTE OF TECHNOLOGY & SCIENCES (KITS), Guntur. His areas of interest are Communication Systems, Signal Processing and Embedded Systems.

Dr. Shaik Khamuruddeen, M. Tech, PhD, MIEEE
He is having 12 years of teaching experience. Presently he is working as Associate Professor in Department of ECE, KKR & KSR INSTITUTE OF TECHNOLOGY & SCIENCES (KITS), Guntur. His areas of interest are Digital Systems, Signal Processing and Women in engineering.

Dr. C. Arunabala, M.Tech, PhD
She is having 25 years of teaching experience. Presently she is working as Professor in Department of ECE, KKR & KSR INSTITUTE OF TECHNOLOGY & SCIENCES (KITS), Guntur. Her areas of interest are VLSI, Embedded systems, Digital systems and Image processing.

Mr. K Siva Naga Narasingarao, M.Tech, (Ph.D),
Presently she is working as Assistant Professor in Department of CSE, KKR & KSR INSTITUTE OF TECHNOLOGY AND SCIENCES (KITS), Guntur. 12 years teaching experience, Wireless Sensor Networks and Network Security.