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Abstract: The article numerically solves the problem of 

a swirling two-phase flow in a separator using the Menter 
model (SST) and Spalart-Allmaras (SA). The 
computational domain, which consists of coaxial cylinders 
and a conical part, is reduced to a rectangular shape by a 
change of coordinates. The stream function and vorticity 
of the flow are introduced, the first equation for which is 
solved by the upper relaxation method and the “upstream” 

scheme is used to solve the second of them. To describe the 
motion of solid particles with a low concentration, we use 
the Logrange approach.The numerical results of applying 
both turbulence models are compared. 

Keywords: turbulent flow, SST model, SA model, 
implicit scheme, counter-flow scheme, Lagrangian 
approach, numerical solution. 

I. INTRODUCTION 

The intensive development of aviation, shipbuilding, and 
transport has attracted great attention to the study of 
separated flows at various values of operating parameters 
and configurations of streamlined bodies. Separate flow is a 
frequently occurring and, at the same time, most difficult to 
study type of motion of a real liquid [1]. The main feature 
of separated flows is that after the separation of the flow, 
the flow becomes unsteady [2,3,4]. Bearing capabilities of 
the wings, aerodynamic characteristics of aircraft, ships and 
submarines, the effectiveness of hydraulic machines and 
wind turbines are directly dependent on the development of 
flow separation. The origin and development of flow 
separation, the characteristics of separated flows are 
determined by a large number of parameters. The study of 
this complex phenomenon has been the subject of many 
experimental [3, 4, 5] and theoretical works [1, 6, 7].  
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The first theoretical results on flow separation were obtained 
using the classical theory of the boundary layer, which, 
however, does not allow one to take into account the strong 
interaction of the boundary layer with the external flow. The 
most important theoretical and practical results on the 
calculation of flows with flow separation were obtained 
using the asymptotic theory of a viscous fluid and semi-
empirical methods based on an a priori choice of a flow 
model based on numerical or physical experiments 
[6].Among the various approaches applied to solving this 
problem, mathematical modeling based on the Navier-
Stokes equations occupies an important place. At present, its 
role is increasing with the development of computer 
capabilities, the improvement of the models and numerical 
methods used, and also in connection with the possibility of 
replacing a costly, and in some cases practically impossible 
physical experiment. Complementing each other, calculation 
and experiment provide new opportunities for studying 
complex interdependent processes. 

The main problem in obtaining non-stationary 
solutions of the Navier-Stokes equations of an 
incompressible fluid lies in the difficulties of simultaneously 
solving the equations of momentum and the continuity 
equation. At the first stage of the development of numerical 
algorithms for solving the Navier – Stokes equations for 
incompressible flows, variable vorticity and stream function 
were more often used [7, 8, 9]. Based on this approach, a 
large number of applied problems were solved, but the 
calculation of spatial problems using current functions is 
very difficult. The use of physical variables allows us to 
solve two-dimensional and three-dimensional problems 
according to a single algorithm. The main mathematical 
problems in solving the Navier-Stokes equations are 
associated with various types of differential equations for 
the laws of conservation of mass and quantity 

Physical statement of the problem. The flow 
behavior in the dust collector is shown schematically in Fig. 
1.  As can be seen from the figure, the dust collector consists 
of concentric cylinders and cones. 

Air is introduced in a tangential direction at the top 
of the dust collector body. Since the flow is limited by the 
cylindrical wall of the inner radius and the outer radius, an 
additional forced downward movement occurs. Next, the 
stream is divided into two parts. The main phase with a low 
density (inertia) is inverted and discharged through a pipe 
into an open atmosphere. Large particles accumulate around 
the wall and move down. 
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Fig. 1. Schematic diagram of a centrifugal dust collector 

Mathematical statement of the problem.  
 
The movements in a centrifugal dust collector are 

complex due to the multifactorial nature of the process in 
mathematical modeling. In contrast to [11], it is desirable to 
use the averaged Navier – Stokes equations. Because the 
flow has an axis of symmetry, then the equations are written 
in cylindrical coordinates: 
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In these systems, ,zV ,rV V respectively, axial, 

radial and tangential components of the airflow velocity 
vector;   is its molecular viscosity; t  turbulent 

airflow viscosity; p  pressure.  

On the walls, all components of the velocity vector 
are equal to zero; 

for 0z and 
10 Rr  : 
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          The initial conditions for the stream function were 
made by the iterative method of zero vorticity value. 
According to found speed 

zr VV , . 

Modeling turbulence. To close the Reynolds-
averaged Navier-Stokes equations, one-parameter 
differential models SA [12, 13] and SST [14], which are 
developed for external subsonic aerodynamics, are used. 

The one-parameter Spalart-Allmaras (SA) 
turbulence model [12] was developed in 1992 and is 
intended to describe equilibrium flows such as a boundary 
layer for external flow problems at small angles of attack 

with small separation zones. Turbulence generation is 
determined by the rotor of the velocity field. 

The SST model is a combination of k-ε and k-ω 

models, providing a combination of the best qualities of 
these long-known models. Thus, the k-ε model proved to be 

good in calculating free and jet shear flows, for the analysis 
of which its first version, proposed by Harlow, was actually 
intended, and the k-ω model provides a much more accurate 

description of the wall boundary layers. 
To close equations (1), the turbulence models SST 

and SA are used. 
The turbulence model SST have the form: 
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SA model in cylindrical coordinates: 

 























































2

2

~~
)~(

11~~~

r
C

r
r

rr
DP

z
V

r
V

t бwwzr






     (3) 

The turbulent viscosity is determined for the SST 

model from the ratio:
 21
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II. SOLUTION METHOD 

 We include the   current function in the system 

according to the dependencies: 
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As a result, we come to a new system: 
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Here .rG   

If we denote yr 2 , system of equations (6) will be: 
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To come to the 

regular calculation area, 
the coordinates were 
changed:  
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Choosing these permutations in equations (7), we 

obtain the following result: 
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Substituting these substitutions and marking (2) and (3), we 
obtain the following results: 
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Border conditions. On the wall, all speeds will be 
zero, and on wasps 0


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F  for F=
zV , v, k, ω and G; 

rV =0. To start the calculation, the values were set 
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3
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   at Re=10000. 

To ensure the stability of the computational process 
in the approximation of convective terms, a difference 
scheme was used against the flow of A.A. The Poisson 
equation for the stream function was also approximated by 
the central difference and the iteration method with upper 
relaxation was used to resolve it [15]. 

After changing the coordinate of equation (8), the 
following form changes: 
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Here   
)(

)(2
, zf

y
M t

ji

 
 ,  )( ,, jitjyN  .  

To determine the turbulent viscosity on the system, 
equation (11) separately solved two turbulence models and 
compared the numerical results. 

 

III. RESULTS 

The parameters of the laboratory installation of the 
dust collector had the following values: 

,121 smR  ,202 smR  ,12 smh  smL 300 . 

The experiments were carried out with the following values 
of the flow parameters at the entrance to the coaxial 

channel: .
8.1

,0,/1.4
2

c

м

r
VVсмV rz  

 

In fig. 2 - 4 illustrate air velocity profiles in the 
cross section  5.0 .  

 
Fig. 2. The profiles of the axial velocity of the air flow in 

the section 5.0  
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Fig. 3. The profiles of the radial air velocity in the cross 

section 5.0  

 
Fig. 3. The profiles of the radial air velocity in the cross 

section 5.0  

We pass to the second stage. There are two approaches to 
modeling the motion of the solid phase (dust): Euler and 
Lagrange [10]. Euler's approach has the potential to account 
for double events. In the Lagrangian approach, we can trace 
the trajectory of the solid phase. For us, dust trajectories are 
important. Therefore, the Lagrangian approach was used in 
this study. As a result, the equations of motion of a solid 
particle (dust particle) have the following form [10]:  
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              (8) 

Here 
rV  and 

V   air speed in directions r  and  , 

pr  и 
p   dust speed in directions r  and  , k  is 

the coefficient of interaction of air and particles. In these 
equations we get the pressure depending on the speed of the 

pipe 0u , sizes 
1R , 

2R  and dynamic pressure 2
0u . We 

are using the interaction coefficient using the Stokes 

law:
0

2
118

ud

R
k




 . 

We use the Lagrange method to describe the motion of 
particles when the system of equations (8) [10] is washed 
down in the form: 
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                             (9) 

Given the known values of ,zV rV  and 
V , this 

system is solved by Euler numerical methods with a second 
order of accuracy. 

In fig. Figures 5-6 show the trajectories of dust 
particles with diameters of ,7 мкм мкм10 and 

мкм13 that were obtained by the Spalart-Almaras 

method. 

   
а) б) в) 

Fig. 5. Particle trajectories obtained by SA models 
 

   

а) б) в) 
Fig. 6. Particle trajectories obtained using the SST 

model. 
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а) б) 

Fig. 7. Vector velocity field in the central part: a) 
SST, b) SA 

IV. FINDINGS 

For the numerical simulation of unsteady turbulent 
separated incompressible flows, the Navier-Stokes equations 
averaged by Reynolds are used. The closure of the system of 
equations is carried out using the Menter MST turbulence 
model SST and Spalart-Allmaras (SA). Implementation of 
the approach used is performed using the developed 
software and methodological support for the numerical 
solution of the Navier-Stokes equations of an 
incompressible fluid in arbitrary orthogonal coordinates. 
Figure 5-6 shows that when a) the diameter with 

mkm7  is approximately 30%, 30% and b) in diameter 

mkm10 , 40%, 40%, they are collected by a dust 

collector, that is, into the hopper. When the diameter 
mkm13 c) dust particles 70%, 80% fall into the hopper. 

As can be seen from the figures above, the numerical results 
of the SA and SST models are very close to each other. 
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