Encryption and Decryption Technique Involving Finite Fields

Ayush Mittal, Ravindra Gupta

Abstract: The object of this paper is to produce a technique for encryption and decryption Involving Finite Fields. In this paper we consider the elements of finite fields GF(2^m) and logical operator XOR to analyze the encryption and decryption technique. Here we also uses the non-singular matrix and a key matrix.

Key Words: Finite Fields, Logical Operator XOR, Encryption, decryption.

I. INTRODUCTION

The study of secure communications techniques is called Cryptography that permits to view a message and its contents only to the sender and recipient. Cryptography is closely related to encryption.

The original message is known as Plaintext, and Ciphertext is the decrypted message. Plaintext and the Ciphertext both are written in the terms of elements from a finite set A, called an alphabet of description.

Here we establish an algorithm which increases the security of cipher. By making the use of elements of finite fields and logical XOR operator, the proposed algorithm along with illustration involves the encryption and decryption of plaintext.

II. RELATED WORK

Certain encryption and decryption techniques of a message involving group theory, metric space, topological space and finite fields have been established by Rani [6], Okelo [5], Mahdi [4], Arora [1], Kahrobaei [3], Iswariya [2] and others. Looking importance and usefulness of encryption and decryption techniques of a message, we propose to establish a new encryption and decryption techniques of a message involving Finite Fields and Logical Operator XOR, following on the lines of above authors.

III. ALGORITHM

In the proposed algorithm we used two different keys. We choose first key in the form of non-singular matrix and with the help of elements of finite fields, the second key is obtained. During encryption and decryption of the message, the elements of finite fields are used in binary & polynomial form.

3.1 Encryption:

1. Secret key K is shared by Sender and receiver, where K is the (m − 1) × (m − 1) non-singular matrix and m is a positive integer.

2. Plaintext is converted by the sender the into pre-assigned numerical values, after then calculates S = KP(mod (2^m − 1)). Here P is the plain text and S is the first cipher text.

3. Now convert S into binary string of m-bits, we get a matrix M. Again choose a random matrix A of order (m − 1) × (m − 1).

4. Randomly select rows/columns of A and perform XOR operation with each row of matrix M and find a matrix M_XOR.

5. Converts the entries of M_XOR into the elements of GF(2^m).

6. Multiply each entry with α^m and calculate a matrix K whose entries are 1 if α has the power greater than 2^m − 1 otherwise 0 and send it to the receiver.

7. Now reduces the powers of the entries to mod (2^m − 1) and find another matrix M_a (say).

8. Firstly converts each entries of M_a into binary form and then converts such binary entries into the corresponding numerical values. After converting these numerical values into text, finally we get Cipher text.

3.2 Decryption:

1. Receiver finds the message. After converting the message into corresponding numerical values, again converts these numerical values in binary form of m-bits and then change into elements of GF(2^m), we get D_a (say).

2. Now multiplies each entries of D_a with α^{2^m−1} which represents 1 in the corresponding key matrix K (say) and get a matrix D_a^t (say).

3. Now multiplies each entries of D_a with α^m and change them in corresponding binary elements of m-bits, we get a matrix D_a^w (say).

4. Identifies the rows/columns of matrix A randomly chosen by the sender to perform XOR with each row of the matrix D_a^w.

5. Now converts each entries of resulting matrix (find in step 4) in numerical values, we get the matrix S.

6. Calculate P = K^tS(mod (2^m − 1)).

7. Now converts each entries of P into corresponding alphabet, we get Plaintext.

IV. ANALYSIS WITH ILLUSTRATION

Consider the numerical values for alphabets and some symbols used in this paper as follows:

<p>| alphabet/ | numerical | alphabet/ | numerical |</p>
<table>
<thead>
<tr>
<th>symbol</th>
<th>value</th>
<th>symbol</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>0</td>
<td>P</td>
<td>16</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Q</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>R</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>S</td>
<td>19</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>T</td>
<td>20</td>
</tr>
</tbody>
</table>
Encryption and Decryption Technique Involving Finite Fields

Consider the message [ENCRYPTDECRIPT] as Plaintext.

4.1 Encryption Steps:

1. Let a 4x4 non-singular key matrix K and shares it with the receiver.

\[K = \begin{bmatrix} 2 & 3 & 5 & 3 \\ 1 & 5 & 1 & 1 \\ 2 & 2 & 3 & 3 \\ 1 & 2 & 1 & 2 \end{bmatrix} \]

2. Converts the chosen plain text into corresponding numerical values using above given Table 1, we get,

\[P = \begin{bmatrix} 27 & 5 & 14 & 3 \\ 18 & 25 & 16 & 20 \\ 4 & 5 & 3 & 18 \\ 25 & 16 & 20 & 29 \end{bmatrix} \]

Now calculate \(S = KP (mod (2^m - 1)) \) on choosing \(m = 5 \).

\[KP (mod 31) = \begin{bmatrix} 2 & 3 & 5 & 3 \\ 1 & 5 & 1 & 1 \\ 2 & 2 & 3 & 3 \\ 1 & 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 27 & 5 & 14 & 3 \\ 18 & 25 & 16 & 20 \\ 4 & 5 & 3 & 18 \\ 25 & 16 & 20 & 29 \end{bmatrix} \left(mod 31 \right) = S(say) \]

\[= \begin{bmatrix} 17 & 3 & 27 & 26 \\ 22 & 27 & 24 & 26 \\ 22 & 30 & 5 & 1 \\ 24 & 30 & 27 & 26 \end{bmatrix} \]

3. Converts the numerical values of matrix S into 5-bit binary string, we get

\[M = \begin{bmatrix} 11001 & 00011 & 11101 & 11010 \\ 10110 & 11011 & 11000 & 11010 \\ 10110 & 11110 & 00101 & 00001 \\ 11000 & 11110 & 11011 & 11010 \end{bmatrix} \]

Now randomly consider a 4x4 matrix A as follows:

\[A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 4 & 7 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 6 \end{bmatrix} \]

\[= \begin{bmatrix} 00001 & 00001 & 00010 & 00011 \\ 00010 & 00011 & 00100 & 00111 \\ 00001 & 00010 & 00011 & 00100 \\ 00010 & 00010 & 00100 & 00111 \end{bmatrix} \]

4. Choose the rows/columns \(R_1, R_2, C_2, C_3 \) from the matrix A at random to perform logical XOR operation with each row of matrix M.

1. Select elements of \(R_1 \) of A in 5-bit binary number & performs logical operator XOR with first row of matrix M, we get

\[000100001001000011 \]

XOR

\[100010001110111010 \]

which gives the first row of matrix \(M_{\text{xor}} \), as follows

\[10000000101100110010011001 \]

2. Select elements of \(R_2 \) of A in 5-bit binary number & performs logical operator XOR with second row of matrix M, we get

\[000100001100000011 \]

XOR

\[101101011100001110 \]

which gives the second row of matrix \(M_{\text{xor}} \), as follows

\[101000110000110001 \]

3. Select elements of \(C_2 \) of A in 5-bit binary number & performs logical operator XOR with third row of matrix M, we get

\[000100001100000011 \]

XOR

\[101101011100001110 \]

which gives the third row of matrix \(M_{\text{xor}} \), as follows

\[101111110000111001 \]

4. Select elements of \(C_3 \) of A in 5-bit binary number & performs logical operator XOR with fourth row of matrix M, we get

\[000100001100000011 \]

XOR

\[110001111011100110 \]

which gives the fourth row of matrix \(M_{\text{xor}} \), as follows

\[110101011001001110 \]

Hence the matrix \(M_{\text{xor}} \) is

\[M_{\text{xor}} = \begin{bmatrix} 10000 & 00010 & 11001 & 11001 \\ 10100 & 11000 & 11100 & 11101 \\ 10111 & 11101 & 00111 & 00011 \\ 11010 & 11100 & 11000 & 11110 \end{bmatrix} \]

5. Now converts the above entries of \(M_{\text{xor}} \) into the elements of GF(2^n) in their basis form such that \((\alpha^2 + \alpha + 1) = 0 \), we get

\[M_n = \begin{bmatrix} a_4 & a_1 & a_2^{25} & a_2^{25} \\ a_7 & a_2^{21} & a_2^{21} & a_4 \\ a_6 & a_4 & a_2^{14} & a_1^{14} \end{bmatrix} \]

After multiplication by \(\alpha^2 \) in the above entries, we get as follows:

\[M_n = \begin{bmatrix} a_9 & a_6 & a_2^0 & a_2^0 \\ a_2^{12} & a_2^{26} & a_2^{26} & a_1^9 \\ a_2^{26} & a_2^{26} & a_2^{16} & a_2^{23} \end{bmatrix} \]

Now choose the key matrix

\[K' = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

such that if power of \(\alpha \) in \(M_n \) is less than 31, the entry in the key matrix is taken 0 otherwise 1.
6. Now reduce $M_{α^{-1}}$ to mod 31, we get

$$M_{α^{-1}} = \begin{bmatrix}
α^3 & α^6 & α^{30} & α^{30} \\
α^3 & α^6 & α^{26} & α^{26} \\
α^3 & α^6 & α^{26} & α^{23} \\
α^3 & α^6 & α^{26} & α^{29}
\end{bmatrix}$$

7. Now write the binary form of the elements of cipher text matrix $M_{α^{-1}}$, we get

$$S' = \begin{bmatrix}
11010 & 01010 & 10010 & 10010 \\
01110 & 10111 & 10111 & 00110 \\
00001 & 00110 & 10111 & 01111 \\
11101 & 11101 & 10111 & 01001
\end{bmatrix}$$

Now converts these numerical values into corresponding binary form of 5-bits, which gives

$$S' = \begin{bmatrix}
26 & 10 & 18 & 18 \\
14 & 23 & 23 & 6 \\
1 & 6 & 27 & 15 \\
29 & 29 & 23 & 9
\end{bmatrix}$$

After converting these numerical values into text using the Table given above, we get the cipher text as follows:

$$ZJRNNWFADF[O]WI$$

Through public channel, this Cipher text is sent to the receiver.

4.2 Decryption Steps:

1. Take Cipher text message $ZJRNNWFADF[O]WI$. Converts the message into corresponding numerical values using Table as given above, we get

$$S' = \begin{bmatrix}
26 & 10 & 18 & 18 \\
14 & 23 & 23 & 6 \\
1 & 6 & 27 & 15 \\
29 & 29 & 23 & 9
\end{bmatrix}$$

Now converts these numerical values in corresponding binary form of 5-bits, which gives

$$S' = \begin{bmatrix}
11010 & 01010 & 10010 & 10010 \\
01110 & 10111 & 10111 & 00110 \\
00001 & 00110 & 10111 & 01111 \\
11101 & 11101 & 10111 & 01001
\end{bmatrix}$$

Again converts these entries into the elements of GF(2^5) and S' becomes

$$D_{α} = \begin{bmatrix}
α^9 & α^6 & α^{30} & α^{30} \\
α^{12} & α^{26} & α^{26} & α^{19} \\
α^9 & α^{19} & α^{23} & α^{19} \\
α^{14} & α^{14} & α^{26} & α^{29}
\end{bmatrix}$$

2. Multiplies those entries of $D_{α'}$ with $α^{31}$ which represents 1 in the corresponding key matrix K, we get the following transformed matrix:

$$D_{α'} = \begin{bmatrix}
α^9 & α^6 & α^{30} & α^{30} \\
α^{12} & α^{26} & α^{26} & α^{19} \\
α^9 & α^{19} & α^{23} & α^{19} \\
α^{14} & α^{14} & α^{26} & α^{29}
\end{bmatrix}$$

3. Now multiply $D_{α'}$ with $α^{-5}$, we get

$$D_{α^{-5}} = \begin{bmatrix}
α^4 & α^1 & α^{25} & α^{25} \\
α^7 & α^{21} & α^{21} & α^{14} \\
α^{26} & α^{4} & α^{4} & α^{10} \\
α^{9} & α^{9} & α^{9} & α^{24}
\end{bmatrix}$$

So the binary representation of $D_{α^{-5}}$ is

$$D_{α^{-5}} = \begin{bmatrix}
10000 & 00010 & 11001 & 11001 \\
10100 & 11000 & 11100 & 11101 \\
10111 & 11101 & 00111 & 00011 \\
11010 & 11010 & 11000 & 11110
\end{bmatrix}$$

4. Now recognizes the rows/columns R1, R2, C2, C3 into 5-bit binary number of the matrix A, which is chosen by the sender, as follows:

$$A = \begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
2 & 2 & 4 & 6 \\
00001 & 00001 & 00010 & 00011
\end{bmatrix} = \begin{bmatrix}
00010 & 00011 & 00100 & 00111 \\
00001 & 00010 & 00111 & 00110 \\
00011 & 00110 & 00111 & 00100 \\
00100 & 00101 & 00100 & 00100
\end{bmatrix}$$

1. Select elements of R1 of A in 5-bit binary number & performs logical operator XOR with first row of matrix $D_{α^{-5}}$, we get

$$00001000010001000011$$

XOR

$$10000000101100111001$$

which gives the first row of matrix M, as follows

$$10001000111011101010$$

2. Select elements of R2 of A in 5-bit binary number & performs logical operator XOR with second row of matrix $D_{α^{-5}}$, we get

$$000100011001000011$$

XOR

$$10101100110011101101$$

which gives the second row of matrix M, as follows

$$10110110110101011010$$

3. Select elements of C2 of A in 5-bit binary number & performs logical operator XOR with third row of matrix $D_{α^{-5}}$, we get

$$00010001100010000110$$

XOR

$$10111111010011100011$$

which gives the third row of matrix M, as follows

$$10110111000101000000$$

4. Select elements of C3 of A in 5-bit binary number & performs logical operator XOR with fourth row of matrix $D_{α^{-5}}$, we get

$$00010001100010010010$$

XOR

$$11011001100011110110$$

which gives the fourth row of matrix M, as follows

$$11001111110101111010$$

Therefore the matrix M is

$$M = \begin{bmatrix}
10001 & 00011 & 11011 & 11010 \\
10110 & 11011 & 11000 & 11010 \\
10110 & 11110 & 00101 & 00001 \\
11000 & 11110 & 11011 & 11010
\end{bmatrix}$$

5. Now converts the entries of M into corresponding numerical values, we get

$$S = \begin{bmatrix}
17 & 3 & 27 & 26 \\
22 & 27 & 24 & 26 \\
22 & 30 & 5 & 1 \\
24 & 30 & 27 & 26
\end{bmatrix}$$

6. Calculate $P = K^{-1}S$(mod 31). Therefore,

$$P = K^{-3}S(mod 31)$$
Encryption and Decryption Technique Involving Finite Fields

7. Now converts the digits of the above matrix into corresponding alphabet using the given Table, we get plain text as follows:

[ENCRYPTDECRYPT]

V. RESULT AND DISCUSSION
On the cipher, the cryptanalysis is done. Here key length is 4x4 matrix in this cipher. Therefore, due to this reason Brute force attack cannot be able to break the cipher. Also known plain text attack cannot break the Cipher text because plain text and the cipher text having no relation directly even if key matrix is known in detail. Since key is depending on logical XOR operation and it displaces the binary bits at different phases of iteration, therefore resultant cipher having highly strength.

VI. CONCLUSION
Proposed encryption and decryption technique is based on the elements of finite fields. It produces two levels of security. In this technique, for different block data, the second key is different, which gives difficulty for breaking the cryptosystem. Thus, there are minimum prospects for Brute force attack. Since there no direct relation between plain text and cipher text, therefore the cipher text cannot be broken (even if the key matrices are known) with the known plain text attack.

REFERENCES

AUTHORS PROFILE
Mr. Ayush Mittal did his post-graduation in M.Tech(Master of Technology) in Computer Science and Engineering from Indian Institute of Information Technology and Management(IIITM), Gwalior, MP in 2015. He has also received gold medal in post-graduation degree. Currently, he is pursuing his Phd in Computer Science and Engineering from SRK university, Bhopal, MP. His area of interest includes robotics, cryptography and embedded systems. He has published 2 research papers in International Journals.

Dr. Ravindra Kumar Gupta received his M.Tech (Master of Technology) degree in Computer Science & Engineering from Sri Satya Sai Institute Of Science & Technology, RGPV Bhopal, In 2010 M.P., Ph.D in Computer Science & Engineering From Barkatullah University Bhopal India. Presently he is Associate Professor Of Computer Science and Engineering Department in RKDFIST, BHOPAL, M.P. India. He is having 12 Yrs of teaching experience. He has published 54 papers in referred International/National Journal & conference also a Member of Easy Chair Conference System.