Differential CMOS Low Noise Amplifier Design for Wireless Receivers

Mahesh Mudavath, K Hari Kishore, Srinivas Bhukya, Babu Gundlapally, Prashanth Chittireddy

Abstract- This article presents the differential CMOS-LNA design for wireless receiver at the frequency of 3.4GHz. This differential LNA provides less noise figure (NF), high gain and good reverse isolation as well as good stability. The designed LNA is simulated with a 180 nanometers CMOS process in cadence virtuoso tool and simulate the results by using SpectreRF simulator. This LNA exhibits a NF of 0.7dB, a high voltage gain of 28dB, and good reverse isolation (S12) of -70dB. It produces an input and output reflection coefficient (S11) of -6.5dB and (S22) of -14dB, and it maintains good stability of Rollet factor Kf > 1, and also alternate stability factor BF < 1, respectively.

Keywords: - Differential; Low Noise Amplifier; Wireless Receivers; Noise Figure.

I. INTRODUCTION

The fast development of recent wireless communication technology as well as market has raised good quality by means of telecommunications and portable electronic devices [1]. The majority of the communication systems could be hand-held; hence device with compressed size is a challenging task for IC manufacturer. The key challenge for compact device size of such systems, directly that it affects power usage and portability. These are broadly used in homes and offices to offer multi-standard receivers [3]. CMOS technology for high frequency integrated circuits is an appropriate solution.

In an advanced CMOS process the challenging factors for design and development of the LNA building blocks are circuit linearity, decreasing supply voltage, low NF, and high gain. The receivers are broadly utilized in RF radio frequency systems. In reality, a receiver is capable to accept every signal from low to high frequency, and the received signals are typically very noisy and weak [1]. So, this LNA is desired to strengthen the received signals and transfer to the subsequent stages. For the design of LNA, noise figure is one of the important key parameter, as it shows the entire system noise presentation in a receiver, and also more power gain [1].

Here, the easy way to design a differential LNA with cascode-stage to amplify weak and noisy signals for wireless receivers [4]. However, this approach requires increases the complication of the receiver, and bulky chip area [3]. The substitute technique employs the switched inductors, capacitors at the matching of input and output. This switching technique can’t offer an appropriate match for all bands of frequency and it also restrictions to receive at a time one frequency band only [2,4,9]. But the cascode differential LNA design is able to offer an improved trade-off between power gain, & noise figure [3].

This paper is prearranged as follows. Section-2 covers the importance of low noise amplifier. Section-3 explains the cascode and differential amplifier techniques of LNA topologies and its fundamental theoretical calculations for design parameters. Section-4 is the description about the circuit design and analysis. The simulation plots are exposed in Section-5 and finally, Section-6 concludes this paper.

II. LOW-NOISE AMPLIFIER

A low-noise amplifier is the foremost stage of the receiver front-end and it is used to amplify the signal which is coming from the antenna terminals whilst introducing a smaller amount of noise by the same LNA [5]. Actually the LNA consist of five different parts, which are appropriate topologies, input impedance matching network, inductive source degeneration circuit, biasing circuit, and output impedance matching network.

The universal topology of any LNA circuit can be consists of three stages. It has the input matching block, core amplifier and finally output matching block. To get better design performance the input/output matching network can try to maintain similarity. It is measured from s-parameters i.e. input/output reflection co-efficient. Generally, these values should be in the range of less than or equal to -10dBm.

The stability of the two-port network is analyzed using s-parameters. The essential and sufficient condition for stability is to taken from Rollet factor Kf > 1 and also alternate stability factor BF < 1 , these are expressed in terms of s-parameters [1].

\[
K_f = \frac{1+|S_{21}|^2-|S_{11}|^2-|S_{22}|^2}{2S_{21}S_{12}} > 1 \\
|B_{11}| > 1 + |S_{11}|^2 - |S_{22}|^2 - \Delta
\]

Where

\[
\Delta = (S_{11}, S_{22} - S_{12}, S_{21})
\]
If $K_f > 1$ & $B_{if} < 1$, the network would be unconditionally stable.

III. CASCADE AND DIFFERENTIAL AMPLIFIER

The amplification block of the cascode circuit is revised during this analysis to attain an optimized performance in single-ended and differential topologies.

2.1. Cascode Transistor Amplifier

The signal flows through the gate of the first transistor M_1, to the second transistor M_2. The bias reference voltage V_{ref} is fixed at gate of the second transistor M_2, such that both transistors operate in saturation mode. The lower transistor acts as a common source amplifier, whereas the upper transistor works in the common gate configuration and also act as isolating output nodes from input. To analyze the cascode stage and its circuit performance, we treat the two series connected transistors as a single compound transistor with the gate and source of M_1 and drain of M_2 acting as the corresponding terminals of the equivalent transistor.

To measure the drain current I_D for cascode amplifier shown in Fig. 1 is a function of gate voltage V_G which is applied at the gate terminal, and drain voltage V_D which is taken from output of drain terminal.

$$I_D = f(V_G, V_D)$$

$$\frac{\partial I_D}{\partial V_G} = g_{meq} \frac{\partial V_G}{\partial V_G} + g_{oeq} \frac{\partial V_D}{\partial V_D}$$

$$g_{meq} = \left. \frac{\partial I_D}{\partial V_G} \right|_{V_D=0}$$

$$g_{oeq} = \left. \frac{\partial I_D}{\partial V_D} \right|_{V_G=0}$$

$$\frac{\partial V_D}{\partial V_G} = \frac{\partial V_D}{\partial V_D} = 0 \quad \frac{\partial V_D}{\partial V_G} = \frac{\partial V_D}{\partial V_D} = 0$$

We then evaluate its equivalent g_{meq} and g_{oeq}. Since the two transistors are in series, then the drain currents of both transistors are equal i.e.

Here, current for both M_1 and M_2

$$I_{D1} = g_{m1}V_{G1} + g_{o1}V_{D1}$$

$$I_{D2} = -g_{m2}V_{G1} - g_{o2}V_{D1}$$

where $I_{D1} = I_{D2} = I_D$

$$V_{D1} = -\frac{g_{m1}}{g_{m2}} + \frac{g_{o1}}{g_{o2}}$$

$$I_D = g_{m1}V_{G1} - I_D = \frac{g_{m1}}{g_{m2} + g_{o2}}$$

$$I_D \left[1 + \frac{g_{o1}}{g_{m2} + g_{o2}} \right] = g_{m1}V_{G1}$$

The small-signal model analysis for cascode transistor shown in Fig. 2. The equivalent transconductance g_{meq} for the cascode stage is regarding the similar to the single transistor stage, the product of Gain Bandwidth ($G \times B$) also remains unchanged. Because of high output impedance, the bandwidth is reduced and the DC gain is increased for a cascode-stage.

$$g_{meq} = \frac{I_D}{V_{G1}} = g_{m1} \left[1 + \frac{g_{o1}}{g_{m2} + g_{o2}} \right]$$

Generally g_m values are very much higher than g_o values. In this case, we can see that

$$g_{meq} \cong g_{m1}$$

$$g_{oeq} = \left. \frac{\partial I_D}{\partial V_D} \right|_{V_G=0} = 0$$

$$\frac{\partial V_G}{\partial V_D} = \frac{\partial V_G}{\partial V_D} - \frac{\partial V_G}{\partial V_D} = -\frac{\partial V_D}{\partial V_D}$$

$$I_d = -g_{m2}V_{d1} + g_{o2}(V_{d2} - V_{d1})$$

for M_2

$$v_{d1} = \frac{I_d}{g_{o1}}$$

$$I_d = -I_d g_{m2} + g_{o2} + g_{o2}V_{d2}$$

$$g_{oeq} = \frac{I_D}{V_{D2}} = g_{o1}$$

$$g_{oeq} = \frac{I_D}{V_{D2}} = \frac{g_{o1}g_{o2}}{g_{o1} + g_{o2} + g_{m2}}$$

$$g_{oeq} = \frac{I_D}{V_{D2}} = \frac{g_{o1}g_{o2}}{g_{o1} + g_{o2} + g_{m2}}$$

$$g_{oeq} = \frac{I_D}{V_{D2}} = \frac{g_{o1}g_{o2}}{g_{o1} + g_{o2} + g_{m2}}$$

$$g_{oeq} = \frac{I_D}{V_{D2}} = \frac{g_{o1}g_{o2}}{g_{o1} + g_{o2} + g_{m2}}$$

We can define the individual DC gains of the two transistors (in CS and CG configurations respectively) [6]. Then the voltage gain A_V can be defined as.

$$A_v = \frac{g_{meq}}{g_{oeq}} = \frac{g_{m1}(g_{m2} + g_{o2})}{g_{o1}g_{m2} + g_{o2}g_{m2}} + \frac{g_{m1}g_{o2}}{g_{o1}g_{m2}}$$

$$A_v = \frac{g_{m1}g_{o2}}{g_{o1}g_{m2}}$$

Here, the effective g_m of cascode is same as the single transistor amplifier.

2.1.1. The Small-Signal Model Analysis

The small-signal model analysis for cascode transistor shown in Fig. 2. The equivalent transconductance g_{meq} for the cascode stage is regarding the similar to the single transistor stage, the product of Gain Bandwidth ($G \times B$) also remains unchanged. Because of high output impedance, the bandwidth is reduced and the DC gain is increased for a cascode-stage.
Writing the KCL equation at the output we get
\[g_m v_x + \frac{v_x - v_o}{r_o} = s C_o v_o \]
This leads to
\[v_x (1 + g_m r_o) = (1 + s C_o r_o) v_o \]
\[v_x = \frac{1 + s C_o r_o v_o}{1 + g_m r_o} \]
Since \(A_2 \) is quite large, \(v_x \) is very small compared to \(v_o \), KCL at the drain of the lower transistor is,
\[s C_{dg1}(v_i - v_x) = g_m v_i + \frac{v_x}{r_o} + s C_o v_o \]
\[(s C_{dg1} - s C_{ds1} v_x) = g_m r_o v_i + v_x + s C_o r_o v_o \]
\[s C_{dg1} v_i - g_m r_o v_i = (1 + s C_o r_o) v_o + s C_o r_o v_o \]
\[v_i (s C_{dg1} r_o - g_m r_o) = \frac{1 + s C_o r_o}{A_2} v_o (1 + s C_{dg1} r_o) \]
\[+ s C_o r_o v_o \]
\[v_i (s C_{dg1} r_o - g_m r_o) = v_o \left((1 + s C_o r_o) + A_2 s C_o r_o v_o \right) \]
\[v_i = v_o \left(A_2 s C_o r_o v_o \right) \]
This gives
\[v_o = \frac{(s C_{dg1} r_o - g_m r_o)}{A_2} v_i \]
\[(1 + s C_o r_o) + A_2 s C_o r_o v_o \]
\[v_o = - \frac{(1 + s C_o r_o)}{A_2} v_i \]
\[v_i = A_2 s C_o r_o v_o \]
\[A_2 s C_o r_o v_o \]
If \(s r_o C_{dg} \) is small we can simplify the above relation to get.
\[Voltage \ gain (A_v) = \frac{v_o}{v_i} = - \frac{A_1 A_2}{1 + s C_o r_o (1 + A_2 s C_o r_o)} \] (4)

2.2. Differential Amplifier
The differential of LNA is broadly used because of its compensation of common-mode (CM) noise immunity [7]. The selection of cascode topology within initial stage degrades the noise presentation of the amplifier yet if it improves the gain. To occupied less chip area by using single ended LNAs, but if the amplifier design is single ended, it’s a lot of vulnerable to noise and alternate interferences [8].
Alternatively, by using the differential amplifier very less amount of liable to noise and intervention are presented [9].
Also the differential amplifier has the benefit of getting the signal swing which will be a double that of the single-ended swing lying on the similar supply voltage, in that way increasing signal-to-noise ratio (SNR) [8].

IV. CIRCUIT DESCRIPTION
A. Cascode Configuration.
The universal topology of LNA consists of 3 stages: staring with input matching set-up, the core amplifier design, and finally the output matching set-up [16]. To begin with, input matching necessities are fulfilled by putting an inductor \(L_p \) at gate of MOSFET transistor it allows resonating at the centre freq. To realize low NF in given structure, an inductor \(L_n \) is located on source terminal; it acts as inductive source degeneration [16]. The capacitance \(C_{gd} \) is worn for wide-band matching. Therefore the \(L_p, C_p \), and \(L_n \) provide the input matching network for wide-band matching. At the output side \(L_d \) and \(C_d \) is resonating to a particular frequency [16].

B. Cascode Differential Configuration
The projected differential cascode LNA [17] [18] is illustrates in Fig. 3. This differential design includes the each side inductive degenerated CS and a CG stage of transistor M1 and M2. Also it consists of input L1, L2, inductors, gate-to-source capacitors \(C_g \), respectively for both sides [17]. The advantage of input-output and noise matching simultaneously, with the help of inductive source degenerated through inductor L2. To avoid the DC signal at the input ports, the DC blocking capacitor \(C_B \) and an off chip capacitor \(C_f \) are used. To optimize the power gain & noise of the LNA, a very small value of shunt capacitance \(C_s \) is connected at the input port. Transistors M1 and M2 commonly called as cascode devices, hence it formed as CG stage cascaded to the input stage [17] [19]. The benefit of the cascode device using in LNA circuit is essentially shields the output from the input stage; hence it extremely improves the power gain and reverse isolation (S12) [20].
V. RESULT ANALYSIS

The design parameters of the LNA circuit are analyzed with respect to the frequency of 3.4GHz operation. A plot of the S-parameters and required parameters is shown from Fig. 4 to Fig. 8. The S_{21} plot is of importance as it gives the gain of the amplifier. As it can be seen from Fig. 4, a gain of 28dB is obtained at 3.4GHz which falls right in our desired range.

![Plot of Noise Figure](image)

The plot of Noise Figure is shown in the Fig. 5, a noise figure (NF) of 0.7dB @ 3.4GHz is obtained.
Fig. 5 Simulated noise figure (NF) = 0.7dB @ 3.4GHz center frequency

Fig. 6 gives the reverse isolation (S_{12}) that is provided by the circuit. The value of the isolation that was obtained is -70dB @ 3.4GHz which are very good figure. This is attributed to the resonating circuit that is inserted between the two stages.

Fig. 6 Simulated reverse isolation (S_{12}) = -70dB @ 3.4GHz center Frequency

Fig. 7 gives the input reflection coefficients (S_{11}), and its obtained value is -6.5dB @ 3.4GHz
Fig. 7 Simulated input return loss $S_{11} = -6.5$dB @ 3.4GHz center frequency

Fig. 8 gives the output reflection coefficients (S_{22}), and its obtained value is -14dB @ 3.4GHz.

The simulated results are summarized and compared to other related works in the area of LNA design and also with some designs employing the cascode strategy. The results are tabulated in table 1.
VI. CONCLUSION

The field of wireless receiver communications has undergone enormous growth, moving quickly during a sequence of generations in the present scenario. The receiver design with low noise is a foremost design constraint. For this context, the design of the LNA for better performance is of immense importance. The proposed LNA for Radiofrequency front-end is designed with very little NF & high gain using 180nm in cadence virtuous tool and simulate the results by using SpectreRF simulator. This LNA exhibits a NF of 0.7dB, a high voltage gain of 28dB, and a good reverse isolation (S12) of -70dB. It gives the s-parameter value of S11 of -6.5dB and S21 of -14dB, and it maintains good stability of Rollet factor K1 < 1, and also alternate stability factor B1 < 1, respectively.

REFERENCES

AUTHORS PROFILE

Mahesh Mudavath was born in Warangal, Telangana state, India. He received the B.Tech degree in Electronics and Communication Engineering from JNTU Hyderabad, India. He received M.Tech degree in VLSI Design from C-DAC Mohali, Chandigarh, India. Presently he is pursuing the Ph.D. degree in the area of VLSI Design from Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, A.P, India. He received M.Tech degree in UWB Applications, in 2010 International Conference on Wireless Communication and Sensor Computing (ICWCSC), Chennai, India, 2010.

Presently he is pursuing the Ph.D. degree in the area of VLSI Design from Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, A.P, India. He received M.Tech degree in VLSI Design from C-DAC Mohali, Chandigarh, India.
Dr. Hari Kishore Kakarla was born in Vijayawada, Andhra Pradesh, India. He received B.Tech in Electronics & Communication Engineering from JNTU Andhra Pradesh, India, and M.Tech from SKD University, Andhra Pradesh, India. He completed the Ph.D in the area of VLSI from Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, A.P, India-522502. Presently he is working as a Professor in ECE, K L University, Guntur, Andhra Pradesh, India, where he has been engaged in teaching, research and development of Digital Testing, Low-Power VLSI, High-speed CMOS VLSI, System on Chip, Memory Processors, ASIC Fault Testing, Embedded Systems, and Nanotechnology. He has published 65 International Journals and 04 IEEE Conference. He is a life member of MISTE, AMIE, MIACSIT, MIAENG, and MUACEE.

Srinivas Bhukya was born in Warangal, Telangana state, India. He received the B.Tech degree in Electronics and Communication Engineering from JNTU Hyderabad, India. He received M.E degree in Communication Engineering from Osmania University (OU), Hyderabad. Presently he is working as Asst. Professor in Sri Indu College of Engineering and Technology, Ibrahimpatnam, Hyderabad, Telangana, India.

Babu Gundlapally was born in Warangal, Telangana state, India. He received the B.Tech degree in Electronics and Communication Engineering from JNTU Hyderabad, India. He received M.Tech degree in VLSI System Design from JNTU Hyderabad, India. His research interests include CMOS analog and digital circuits, RF wireless transceiver design, and Low Noise Amplifier Design.

Prashanth Chittireddy was born in Warangal, Telangana state, India. He received the B.Tech degree in Electronics and Communication Engineering from JNTU Hyderabad, India. He received M.Tech degree from JNTU Hyderabad, India. Presently he is working as Asst. Professor in Vaagdevi Engineering College, Telangana, India. His research interests include CMOS analog circuits, RF wireless transceiver design, and Low Noise Amplifier Design. He is a life member of ISTE.