

## A.P. Kaledin, Yu.A. Yuldashbaev, T.S. Kubatbekov, A.I. Filatov, A.M. Ostapchuk, V.M. Makeeva, M.V. Stepanova, U.A. Shergaziev

Abstract: The paper proposes an original economic and mathematical model for size and structure optimisation of Predator and Prey populations.

The most well-known mathematical model in biology for periodical dynamics of antagonistic animal species was developed independently by Alfred Lotka and Vito Volterra. This classical mathematical Predator-Prey model is known as the Lotka-Volterra model.

Keywords: Lotka-Volterra model, economic and mathematical modelling, animals.

#### I. INTRODUCTION

The problem setting is as follows. A closed ecological area is home to two antagonistic animal species (Predator and Prey). Prey feeds on plants available in unlimited abundance. Predator only lives off the above specific species of Prey. The task is to determine the dynamics of the Predator and Prey populations in the given ecosystem. The model assumes the probability of encounters between Predator and Prey to increase with Prey population growth, which is also followed, after a certain time lag, by increases of the Predator population. In the given setting, this classical model describes some of the scenarios of interactions between the Predator and Prey populations in nature.

The Lotka-Volterra model is widely covered in literature; therefore, there is no point to discuss it in this paper.

Manuscript published on November 30, 2019. \* Correspondence Author

- A.P. Kaledin\*, Russian State Agrarian University named after K.A. Timirvazev, Moscow, Russia,
- Yu.A. Yuldashbaev, Russian State Agrarian University named after K.A. Timiryazev, Moscow, Russia.
- T.S. Kubatbekov, Russian State Agrarian University named after K.A. Timirvazev, Moscow, Russia.
- A.I. Filatov, Russian State Agrarian University named after K.A. Timiryazev, Moscow, Russia.
- A.M. Ostapchuk, Russian State Agrarian University named after K.A. Timiryazev, Moscow, Russia.
- V.M. Makeeva, Moscow State University named after M.V. Lomonosov, Moscow, Russia,
- M.V. Stepanova, Yaroslavl State Agricultural Academy, Yaroslavl, Russia

U.A. Shergaziev, Kyrgyz national agrarian university named after k. I. Skryabin

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

In modelling the actual relations between antagonistic animal species, this classic model presents several challenges. The classical Predator-Prey model is structurally unstable, as even a minor change of the right side of one of the equations may fundamentally change its phase profile. The significant wave pattern of the Predator and Prey population dynamics makes it difficult to compare model results with empirical data. Predator's mono diet means the model is a single-factor model (one Predator species and one Prey species), which significantly reduces the potential of recreating actual natural relations. It leaves no scope for Predator-Prey population size or structure optimisation in line with a set criterion. Moreover, there is no possibility to set resource constraints and take into account the sex-age structure of Predator-Prey systems.

#### II. PROPOSED METHODOLOGY

#### A. Economic and mathematical model for size and structure optimisation of Predator and Prey populations

The economic and mathematical model for size and structure optimization of Predator and Prey populations (Predator-Prey EMM) has a block-diagonal structure. Figure 1 presents the structural scheme of the Predator-Prey EMM.



Fig.1: Structural scheme of the Predator-Prey EMM

Published By: Blue Eyes Intelligence Engineering & Sciences Publication



9081

The blocks Prey 1...n make the subsystem Prey and the blocks Predator 1...m make the subsystem Predator, which are combined in a system by the auxiliary and connection blocks.

Each of the blocks in the Prey or Predator subsystems is based on the game species population turnover block with directions of use of the population and produce.

#### B. Game species population turnover block

The economic and mathematical model for population turnover optimisation of game animals belongs to structural models reflecting the dynamics of sex-age groups within a set period [1]-[3]. As long as the model is a block within the Predator-Prey EMM, it does not contain several variables and constraints, as well as the target function.

The system of variables of the model is represented by a group of variables of time averages (annual averages) of the population by sex-age population groups. The variables of population and produce distribution in dynamics are added (official harvesting, illegal hunting and losses to predation).

The model constraint system includes the following groups:

- by the relation of productive animals (females) and born animals;

Time averages (annual averages) of the population, head

- by the relation of sexes in young and old groups;

- by the relation of proximate age groups for females and males;

- by the relation of productive animals and animals of old age groups for females and males;

- product constraints by population dynamics and products of population management.

Table 1 shows the structural scheme of a segment of the population turnover block of game animals.

Legend:

W is the yield of born young animals per annual (time average) head of productive animals (females);

Cto is the coefficient of animal turnover for the age group calculated as the ratio of duration of the given period (year) to the life expectancy of the animal of the given age group;

Cp is the coefficient of persistence of the given age group; Cd is the coefficient of decrease for the age group calculated as 1 minus the coefficient of persistence;

Cl is the coefficient of female load per male;

| Constr                                 | aints                                     | Product<br>animals | ive     | Old    | group   | Medium | n group 2        | Mediun | n group 1        | You              | ng group         | Born ar          | nimals 0-2       | Constraint | Constrain<br>scope |
|----------------------------------------|-------------------------------------------|--------------------|---------|--------|---------|--------|------------------|--------|------------------|------------------|------------------|------------------|------------------|------------|--------------------|
|                                        |                                           | males              | females | males  | females | males  | females          | males  | females          | males            | females          | males            | females          | type       |                    |
|                                        |                                           | X<br>1             | X2      | X<br>3 | X4      | 5 X    | X6               | 7 X    | X8               | 9 X              | X1<br>0          | X<br>11          | X1<br>2          |            |                    |
| Relation o<br>animals (fo<br>oorn anim | f productive<br>emales) and<br>als        |                    | w       |        |         |        |                  |        |                  |                  |                  | C<br>to          | Cto              | ≤          | 0                  |
| Relation o<br>young gro                | f sexes in<br>ups                         |                    |         |        |         |        |                  |        |                  |                  |                  | 1                | -1               | =          | 0                  |
| Relation o<br>groups                   | f sexes in old                            | -<br>Cl            | 1       |        |         |        |                  |        |                  |                  |                  |                  |                  | $\leq$     | 0                  |
|                                        | Relation<br>of<br>proximate<br>age groups |                    |         |        |         |        |                  |        |                  |                  | Cto              |                  | -<br>Cto *<br>Cp | ≤          | 0                  |
| - 1                                    | Relation<br>of<br>proximate<br>age groups |                    |         |        |         |        |                  |        | Cto              |                  | -<br>Cto *<br>Cp |                  |                  | ≤          | 0                  |
| Pemales                                | Relation<br>of<br>proximate<br>age groups |                    |         |        |         |        | Cto              |        | -<br>Cto *<br>Cp |                  |                  |                  |                  | ≤          | 0                  |
|                                        | Relation<br>of<br>proximate<br>age groups |                    |         |        | Cto     |        | -<br>Cto *<br>Cp |        |                  |                  |                  |                  |                  | VI         | 0                  |
|                                        | Relation<br>of<br>proximate<br>age groups |                    |         |        |         |        |                  |        |                  | C<br>to          |                  | -<br>Cto *<br>Cp |                  | <          | 0                  |
|                                        | Relation<br>of<br>proximate               |                    |         |        |         |        |                  | C to   |                  | -<br>Cto *<br>Cp |                  |                  |                  | ≤          |                    |

Table 1: Structural scheme of the game species population turnover block



 $\leq$ 

 $\leq$ 

Ω

0

0

Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

age groups

Relation

proximate

Relation

proximate

age groups

age groups

of

of

Males

9082

Cto \*

Cp

С

to

Cto \*

Cp

С

to



| Females | Relation<br>of<br>productive<br>and old<br>animals |    | Cd |                  | Cto *<br>Cp |  |  |  |  | <  | 0 |
|---------|----------------------------------------------------|----|----|------------------|-------------|--|--|--|--|----|---|
| Males   | Relation<br>of<br>productive<br>and old<br>animals | Cd |    | -<br>Cto *<br>Cp |             |  |  |  |  | VI | 0 |

In real models, the differentiation of population turnover block for game animals by the sex-age structure can be

# C. Input preparation and development of the numerical EMM

The development of a numerical EMM requires a description of the order and limits of input data for the

constrained by the age structure.

described populations of game animals. A framework description of the input for the research subject is provided in Table 2 and the accompanying commentary.

|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>P</b> == 0 = 0 = 0 = 0 = 0                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade | Operation area, ha    | Area of                                                                                                                                                                                                                                                                                                                                                                                                                                  | Head                                                                                                                                                                                                                                                                                | %                                                                                                                                                                                                                                                                                                                                                                                                                                      | Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sex ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                       | natural                                                                                                                                                                                                                                                                                                                                                                                                                                  | count by                                                                                                                                                                                                                                                                            | change                                                                                                                                                                                                                                                                                                                                                                                                                                 | count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (males:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                       | lands                                                                                                                                                                                                                                                                                                                                                                                                                                    | winter                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                        | total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | animal,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | females)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          | survey                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3     | 100,000               | 80,000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 480                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                     | 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12-15 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3     | 100,000               | 45,000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 360                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                     | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3     | 100,000               | 5,000                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 (10-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3     | 100,000               | 80,000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,800                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3     | 100,000               | 15,000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                     | 675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3     | 100,000               | 95,000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-8 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 (15-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:1 (1:3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | (300,000-500,000      |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | )                     |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Grade 3 3 3 3 3 3 3 3 | Grade         Operation area, ha           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000           3         100,000 | Grade         Operation area, ha         Area of natural lands           3         100,000         80,000           3         100,000         5,000           3         100,000         5,000           3         100,000         15,000           3         100,000         95,000 | Grade         Operation area, ha         Area of natural lands         Head count by winter survey           3         100,000         80,000         480           3         100,000         45,000         360           3         100,000         5,000         30           3         100,000         5,000         30           3         100,000         95,000         450           3         100,000         95,000         3 | Grade         Operation area, ha         Area of<br>natural<br>lands         Head<br>count by<br>winter<br>survey         %<br>change           3         100,000         80,000         480         15           3         100,000         45,000         360         30           3         100,000         5,000         30         80           3         100,000         5,000         30         50           3         100,000         15,000         450         50           3         100,000         95,000         3         200 | Grade       Operation area, ha       Area of natural lands       Head count by winter survey       %       Head count total         3       100,000       80,000       480       15       552         3       100,000       45,000       360       30       468         3       100,000       5,000       30       80       54         3       100,000       15,000       480       100       9,600         3       100,000       95,000       33       200       7-8 (9)         3       100,000       95,000       3       200       7-8 (9) | Grade         Operation area, ha         Area of natural lands         Head count by winter survey         % change         Head count by count total         Weight of one animal, kg           3         100,000         80,000         480         15         552         300-400           3         100,000         45,000         360         30         468         60-80           3         100,000         5,000         30         80         54         25-30 (35)           3         100,000         15,000         450         100         9,600         3-4           3         100,000         95,000         450         50         675         5-6           3         100,000         95,000         3         200         7-8 (9)         40-55 (70) | Grade         Operation area, ha         Area of natural lands         Head count by winter survey         % change         Head count total         Weight of one animal, kg         Life duration           3         100,000         80,000         480         15         552         300-400         12-15 (25)           3         100,000         45,000         360         30         468         60-80         10-12           3         100,000         5,000         30         80         54         25-30         12 (10-20) (35)           3         100,000         15,000         4500         100         9,600         3-4         8-9           3         100,000         95,000         450         50         675         5-6         10-12           3         100,000         95,000         3         200         7-8 (9)         40-55 (70)         12 (15-16) |

Table 2: Input data for modeling

Elk. Population: current year's brood: 30% (15-30%), yearlings: 20% (6-17%), two-year-olds: 15%, adults: 35% (60-80%). Spinsters: up to 30%. Productive segment of the population: 25-30% of the population. Females get fertile by the age of 16 months. Males mate at the age of 3-4 years. Fertility rate: 1.5-1.8 elk calves.

Boar. Population: current year's brood: 50%, piglets: 20%, adults: 30%. Losses to predation: 13-18%.

Beaver. Population: current year's brood: 25%, yearlings: 18%, two-year-olds: 12%, adults: 40-55%. Death rate: 50% of young animals. Losses to Wolf: 58%, stray dogs: 27% and Lynx: 15% (according to hunters' data). Losses to predation are overall limited.

White Hare. Cycle. Decline in population every 10-12 years. Three broods, 7-8 young hares on average per season.

Brown Hare. Three broods, 7-8 young hares on average per season (I-1-3,5, II-2-4,7, III-3-5 young hares). Death rate: up to 75% of population. Populations peak every 5-9 years.

Wolf. Core population: young wolves: 30%, yearlings: 18%, adults, age 2-3: 20%, 4-5: 27%, 6-8: 4%, 8 and older: 1%. Core population, age 4-5: 27%, sex ratios: females: 48%, males: 52%. Females are fertile in the second year of life (22 months). Males become fertile in the second or third years of life. A female delivers between 3 to 12 wolf cubs (5-6 cubs on average). The average survival rate is 50-60% cubs. On average, wolves' diet includes 97% mammals, 2% birds, 1% plants (ungulates account for 75-85% of the diet, mostly young animals). Wolves consume 4.5 kg of food per day

(4.4-5.9). One wolf consumes approximately 1,350 kg meat of mammals and 8-10 kg of plants per year. Thus, a group of 7 head of wolves potentially consumes 9,450 kg of meat and 56-70 kg of plants per year on average. The acceptable proportion of Wolf (taking into account shooting, illegal hunting and diseases) can be assumed at 1 wolf per 150 ungulates. The density per 1,000 ha of land of 0.06 head is the optimal (economically acceptable) rate in case of active Wolf control efforts. The natural area controlled by a group of wolves can reach 300,000-500,000 ha (depending on food availability, i.e animals). Wolf shooting rate is 60%.

For modelling purposes, the framework information is used to ensure consistency with constraint conditions in the order of used data. The base blocks for the discussed game populations were drawn from the models described in [4]-[11].

Each population turnover block was adapted to be included in the Predator-Prey EMM with added variables of the headcount of official harvesting, illegal hunting and losses to predation (Wolf). Besides, game population losses to wolves are expressed in terms of kg of meat. The above variables are calculated within the respective included structural constraints.

Tables 3-7 show fragments of the EMM for blocks of the Prey subsystem and Table 8 - a fragment of the Predator subsystem.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication



Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

9083

|     |                               |         | Average                            | annual popu      | ilation, head        |               |                |       | Head                              |             |        | Meat               |
|-----|-------------------------------|---------|------------------------------------|------------------|----------------------|---------------|----------------|-------|-----------------------------------|-------------|--------|--------------------|
|     |                               |         | Age gro                            | ups of Elk       |                      |               |                |       |                                   | Illegal     |        | for<br>Wolf,<br>kg |
| Mod | el                            |         | curren<br>t year's<br>brood<br>0-1 | yearlings<br>1-2 | two-year-olds<br>2-3 | adults<br>3-9 | adults<br>9-15 | Total | Projected<br>harvesting<br>, head | huntin<br>g | Wolves |                    |
|     |                               |         | x1                                 | x2               | x3                   | x4            | x5             | x6    | x7                                | x8          | x9     |                    |
|     | Born young animals            | y1      | 15                                 |                  | -9.45                | -1.575        | -1.575         |       |                                   |             |        |                    |
|     | current year's brood<br>0-1   | y2      | -14.25                             | 15               |                      |               |                |       |                                   |             |        |                    |
| Elk | yearlings 1-2                 | v3      |                                    | -14.25           | 15                   |               |                |       | 0.4                               | 0.4         | 0.4    |                    |
|     | two-year-olds 2-3             | y4      |                                    |                  | -14.250              | 2.50          |                |       | 0.4                               | 0.4         | 0.4    |                    |
|     | adults 3-9                    | y5      |                                    |                  |                      | -2.375        | 2.5            |       | 0.2                               | 0.2         | 0.2    |                    |
|     | 9 and older                   | y6      |                                    |                  |                      |               | 1              |       |                                   |             |        |                    |
|     | Total                         | y7      | 1                                  | 1                | 1                    | 1             | 1              | -1    |                                   |             |        |                    |
|     | Projected<br>harvesting, head | y8      |                                    |                  |                      |               |                | 0.03  | -1                                |             |        |                    |
|     | Illegal hunting, head         | y9      |                                    |                  |                      |               |                | 0.12  |                                   | -1          |        |                    |
|     | Elk meat for wolves,<br>kg    | y1<br>0 |                                    |                  |                      |               |                |       |                                   |             | 280    | -1                 |

#### Table 3: Fragment of the Elk block of the numerical EMM

### Table 4: Fragment of the Boar block of the numerical EMM

|      |                               |     | A                              | verage and     | nual popul    | ation, head    |       |                                  | Head               |        | Meat               |
|------|-------------------------------|-----|--------------------------------|----------------|---------------|----------------|-------|----------------------------------|--------------------|--------|--------------------|
|      |                               |     | ŀ                              | Age groups     | of Boar       |                |       |                                  |                    |        | for<br>Wolf,<br>kg |
|      | Model                         |     | current<br>year's<br>brood 0-1 | piglets<br>1-2 | adults<br>2-7 | adults<br>7-12 | Total | Projected<br>harvesting,<br>head | Illegal<br>hunting | Wolves |                    |
|      |                               |     | x11                            | x12            | x13           | x14            | x15   | x16                              | x17                | x18    |                    |
|      | Born young                    |     |                                |                |               | 1.00           |       |                                  |                    |        |                    |
|      | animals                       | y11 | 12                             |                | -4.32         | -4.32          |       |                                  |                    | 0.4    |                    |
| Boar | current year's brood<br>0-1   | v12 | -11.4                          | 12             |               |                |       |                                  |                    | 0.4    |                    |
|      | piglets 1-2                   | y13 |                                | -11.400        | 2.400         |                |       | 0.75                             | 0.75               | 0.4    |                    |
|      | adults 2-7                    | y14 |                                |                | -2.28         | 2.4            |       | 0.25                             | 0.25               | 0.2    |                    |
|      | adults 7-12                   | y15 |                                |                |               | 1              |       |                                  |                    |        |                    |
|      | Total                         | y16 | 1                              | 1              | 1             | 1              | -1    |                                  |                    |        |                    |
|      | Projected<br>harvesting, head | y17 |                                |                |               |                | 0.15  | -1                               |                    |        |                    |
|      | Illegal hunting,<br>head      | y18 |                                |                |               |                | 0.30  |                                  | -1                 |        |                    |
|      | Boar meat for<br>wolves, kg   | y19 |                                |                |               |                |       |                                  |                    | 44     | -1                 |

# Table 5: Fragment of the White Hare block of the numerical EMM

|       |                    |                |                 |       |                                  | Head    |        |                    |
|-------|--------------------|----------------|-----------------|-------|----------------------------------|---------|--------|--------------------|
|       | Age grou           | ips of Whi     | te Hare         |       |                                  | llegal  |        | White<br>Hare meat |
| Model | young<br>hares 0-1 | animals<br>1-6 | animals<br>6-11 | Total | Projected<br>harvesting,<br>head | hunting | Wolves | wolves,<br>kg      |
|       | x20                | x21            | x22             | x23   | x24                              | x25     | x26    | x27                |



Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

Published By:



|       | Born young    |     |        |       |       |      |      |      |       |    |
|-------|---------------|-----|--------|-------|-------|------|------|------|-------|----|
|       | animals       | y20 | 11     | -6.16 | -6.16 |      |      |      |       |    |
| White | young hares   |     |        |       |       |      |      |      |       |    |
| Hare  | 0-1           | y21 | -10.45 | 2.20  |       |      | 0.50 | 0.50 | 0.75  |    |
|       | animals 1-6   | y22 |        | -2.09 | 2.2   |      | 0.50 | 0.50 | 0.25  |    |
|       | animals 6-11  | y23 |        |       | 1     |      |      |      |       |    |
|       | Total         | y24 | 1      | 1     | 1     | -1   |      |      |       |    |
|       | Projected     |     |        |       |       |      |      |      |       |    |
|       | harvesting,   |     |        |       |       |      |      |      |       |    |
|       | head          | y25 |        |       |       | 0.04 | -1   |      |       |    |
|       | Illegal       |     |        |       |       |      |      |      |       |    |
|       | hunting, head | y26 |        |       |       | 0.15 |      | -1   |       |    |
|       | White Hare    |     |        |       |       |      |      |      |       |    |
|       | meat for      |     |        |       |       |      |      |      |       |    |
|       | wolves, kg    | y27 |        |       |       |      |      |      | 2.625 | -1 |

## Table 6: Fragment of the Brown Hare block of the numerical EMM

|       |                                         |     |                               |                                      |                         |       |                                  | Head                   | r      |                                            |
|-------|-----------------------------------------|-----|-------------------------------|--------------------------------------|-------------------------|-------|----------------------------------|------------------------|--------|--------------------------------------------|
| M     | odel                                    |     | Age gro<br>young hares<br>0-1 | <b>ups of Brown H</b><br>animals 1-8 | lare<br>animals<br>8-15 | Total | Projected<br>harvesting,<br>head | Illegal<br>huntin<br>g | Wolves | Brown<br>Hare<br>meat for<br>wolves,<br>kg |
|       |                                         |     | x28                           | x29                                  | x30                     | x31   | x32                              | x33                    | x34    | x35                                        |
|       | Born<br>young<br>animals                | y20 | 15                            | -6.857                               | -6.857                  |       |                                  |                        |        |                                            |
| Brown | young<br>hares 0-1                      | y21 | -14.25                        | 2.14                                 |                         |       | 0.50                             | 0.50                   | 0.75   |                                            |
| Tiale | animals<br>1-6                          | y22 |                               | -2.035                               | 2.142                   |       | 0.50                             | 0.50                   | 0.25   |                                            |
|       | animals<br>6-11                         | y23 |                               |                                      | 1                       |       |                                  |                        |        |                                            |
|       | Total                                   | y24 | 1                             | 1                                    | 1                       | -1    |                                  |                        |        |                                            |
|       | Projected<br>harvesting,<br>head        | y25 |                               |                                      |                         | 0.04  | -1                               |                        |        |                                            |
|       | Illegal<br>hunting,<br>head             | y26 |                               |                                      |                         | 0.15  |                                  | -1                     |        |                                            |
|       | Brown<br>Hare meat<br>for<br>wolves, kg | y27 |                               |                                      |                         |       |                                  |                        | 3.25   | -1                                         |

## Table 7: Fragment of the Beaver block of the numerical EMM

|         |                             |         | -                      |           | ne or the zea     |            |            |       |                          |         |        |                    |
|---------|-----------------------------|---------|------------------------|-----------|-------------------|------------|------------|-------|--------------------------|---------|--------|--------------------|
|         |                             |         |                        | Avera     | ige annual popula | ation, hea | d          |       |                          | Head    |        | Meat               |
|         |                             |         |                        | Age       | groups of Beave   | r          |            |       |                          | Illegal |        | for<br>Wolf,<br>kg |
|         |                             |         | current                | yearlings | two-year-olds     | adults     | adult      | Total |                          | huntin  | Wolves |                    |
|         | Model                       |         | year's<br>brood<br>0-1 | 1-2       | 2-3               | 3-10       | s<br>10-17 |       | Projected<br>harvesting, | g       |        |                    |
|         |                             |         | x36                    | x37       | x38               | x39        | x40        | x41   | x42                      | x43     | x44    | x45                |
| Deerver | Born young<br>animals       | y3<br>6 | 17                     |           | -11.9             | -1.7       | -1.7       |       |                          |         |        |                    |
| Deaver  | current year's<br>brood 0-1 | y3<br>7 | -16.15                 | 17        |                   |            |            |       |                          |         |        |                    |



Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

Published By:

| yearlings 1-2 | y3 |   | -16.15 | 17     |       |       |      |     |     | 0.5  |    |
|---------------|----|---|--------|--------|-------|-------|------|-----|-----|------|----|
|               | 8  |   |        |        |       |       |      | 0.3 | 0.3 |      |    |
| two-year-olds | y3 |   |        | -16.15 | 2.429 |       |      |     |     | 0.4  |    |
| 2-3           | 9  |   |        |        |       |       |      | 0.3 | 0.3 |      |    |
| adults 3-10   | y4 |   |        |        | -2.30 | 2.429 |      |     |     | 0.1  |    |
|               | 0  |   |        |        | 7     |       |      | 0.4 | 0.4 |      |    |
| adults 10-17  | y4 |   |        |        |       | 1     |      |     |     |      |    |
|               | 1  |   |        |        |       |       |      |     |     |      |    |
|               | y4 | 1 | 1      | 1      | 1     | 1     | -1   |     |     |      |    |
| Total         | 2  |   |        |        |       |       |      |     |     |      |    |
| Projected     | y4 |   |        |        |       |       | 0.03 | -1  |     |      |    |
| harvesting,   | 3  |   |        |        |       |       |      |     |     |      |    |
| head          |    |   |        |        |       |       |      |     |     |      |    |
| Illegal       | y4 |   |        |        |       |       | 0.09 |     | -1  |      |    |
| hunting, head | 4  |   |        |        |       |       |      |     |     |      |    |
| Beaver meat   | y4 |   |        |        |       |       |      |     |     | 12.7 | -1 |
| for wolves,   | 5  |   |        |        |       |       |      |     |     |      |    |
| kg            |    |   |        |        |       |       |      |     |     |      |    |

## Table 8: Fragment of the Wolf block of the numerical EMM

|      |                                 | Average annual population, head |                        |                  |               |               |               |                |       |                           |
|------|---------------------------------|---------------------------------|------------------------|------------------|---------------|---------------|---------------|----------------|-------|---------------------------|
|      |                                 |                                 |                        |                  | Age groups    | of Wolf       |               |                |       | Wolf's meat requirements, |
|      | Model                           |                                 | young<br>wolves<br>0-1 | yearlings<br>0-1 | adults<br>2-3 | adults<br>3-5 | adults<br>5-8 | adults<br>8-12 | Total | kg                        |
|      |                                 |                                 | x46                    | x47              | x48           | x49           | x50           | x51            | x52   | x53                       |
|      | Born young animals              | y46                             | 12                     |                  | -27           | -13.5         | -9            | -6.75          |       |                           |
|      | young wolves 0-1                | y47                             | -6                     | 12               |               |               |               |                |       |                           |
|      | yearlings 0-1                   | y48                             |                        | -11.4            | 12            |               |               |                |       |                           |
| Wolf | adults 2-3                      | y49                             |                        |                  | -11.4         | 6             |               |                |       |                           |
|      | adults 3-5                      | y50                             |                        |                  |               | -5.7          | 4             |                |       |                           |
|      | adults 5-8                      | y51                             |                        |                  |               |               | -3.8          | 3              |       |                           |
|      | adults 8-12                     | y52                             |                        |                  |               |               |               | 1              |       |                           |
|      | Total                           | y53                             | 1                      | 1                | 1             | 1             | 1             | 1              | -1    |                           |
|      | Wolf's meat<br>requirements, kg | y54                             | 300                    | 450              | 600           | 900           | 1200          | 1350           |       | -1                        |

The connection block of the numerical EMM is the Wold feed (diet) constraint, which connects all blocks of the Prey subsystem and the block of the Predator subsystem.

The target function is the population persistence measure of game animals given a decline in losses due to official harvesting, illegal hunting and losses to Wolf. For populations of the Prey subsystem bounded above and populations of the Predator subsystem bounded below, this criterion allows to calculate the optimum structure and size of each population.

## **III. RESULT ANALYSIS**

## A. Analysis of A Solution of The Predator-Prey Emm

### **Base possibility**

The base possibility calculations under the Predator-Prey EMM assume losses to Wolf at 5% for Elk and 3% for Boar.



Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: www.ijrte.org

Published By:



| Age groups of Wolf                              | young<br>wolves 0-1 | yearling<br>s 0-1 | adults<br>2-3 | adults<br>3-5 | adults<br>5-8 | adults 8-12 | Total   |
|-------------------------------------------------|---------------------|-------------------|---------------|---------------|---------------|-------------|---------|
| Average annual Wolf population                  | 2.2                 | 1.1               | 1.0           | 2.0           | 2.8           | 1.0         | 10.0    |
| Annual population,<br>head                      | 2.2                 | 1.1               | 1.0           | 1.0           | 0.9           | 0.3         |         |
| Annual meat<br>requirements per one<br>wolf, kg | 300                 | 450               | 600           | 900           | 1,200         | 1,350       |         |
| Meat per Wolf<br>population, kg                 | 650.9               | 488.1             | 618.3         | 1,762.2       | 3,348.2       | 1,350.0     | 8,217.7 |

|                                                          | Elk   | Boar | White | Brown | Beaver |
|----------------------------------------------------------|-------|------|-------|-------|--------|
|                                                          |       |      | Hare  | Hare  |        |
| Official harvesting share, at the lowest                 | 0.07  | 0.15 | 0.04  | 0.04  | 0.05   |
| Illegal hunting share, at the lowest                     | 0.14  | 0.20 | 0.15  | 0.15  | 0.10   |
| Losses to Wolf, at the lowest                            | 0.05  | 0.03 | 0.07  | 0.07  | 0.10   |
| Projected harvesting, head                               | 33.6  | 54.0 | 192.0 | 18.0  | 1.5    |
| Illegal hunting, head                                    | 67.2  | 72.0 | 720.0 | 67.5  | 3.0    |
| Losses to Wolf, head                                     | 24.0  | 10.8 | 336.0 | 31.5  | 3.0    |
| Average meat weight per one head for<br>wolves' feed, kg | 280.0 | 44.0 | 2.6   | 3.3   | 12.7   |

|                                      | Age groups of Elk           |               |                   |            |             |       |  |  |  |
|--------------------------------------|-----------------------------|---------------|-------------------|------------|-------------|-------|--|--|--|
| Indicator                            | current year's<br>brood 0-1 | yearlings 1-2 | two-year-olds 2-3 | adults 3-9 | adults 9-15 | Total |  |  |  |
| Average annual population, head      | 59.5                        | 43.3          | 37.8              | 195.5      | 144.0       | 480.0 |  |  |  |
| Annual (current)<br>population, head | 59                          | 43            | 38                | 33         | 24          |       |  |  |  |

| Indicator                         | current year's brood<br>0-1 | piglets 1-2 | adults 2-7 | adults 7-12 | Total |
|-----------------------------------|-----------------------------|-------------|------------|-------------|-------|
| Average annual population, head   | 48.5                        | 45.7        | 175.8      | 90.0        | 360.0 |
| Annual (current) population, head | 48.5                        | 45.7        | 35.2       | 15.0        |       |



Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

Published By:

| Indicator                         | Ag              | e groups of White Har | e            | Total   |
|-----------------------------------|-----------------|-----------------------|--------------|---------|
|                                   | young hares 0-1 | animals 1-6           | animals 6-11 |         |
| Average annual population, head   | 682.1           | 2,917.9               | 1,200.0      | 4,800.0 |
| Annual (current) population, head | 682.1           | 583.6                 | 240.0        |         |

| Indicator                         | Ag              | Age groups of Brown Hare |              |       |  |  |  |
|-----------------------------------|-----------------|--------------------------|--------------|-------|--|--|--|
|                                   | young hares 0-1 | animals 1-8              | animals 8-15 |       |  |  |  |
| Average annual population, head   | 42.3            | 250.2                    | 157.5        | 450.0 |  |  |  |
| Annual (current) population, head | 42.3            | 35.7                     | 22.5         |       |  |  |  |

|                                      | Age groups of Beaver        |               |                   |             |              |       |  |  |  |
|--------------------------------------|-----------------------------|---------------|-------------------|-------------|--------------|-------|--|--|--|
| Indicator                            | current year's<br>brood 0-1 | yearlings 1-2 | two-year-olds 2-3 | adults 3-10 | adults 10-17 | Total |  |  |  |
| Average annual population, head      | 2.5                         | 2.3           | 2.1               | 12.6        | 10.5         | 30.0  |  |  |  |
| Annual (current)<br>population, head | 2.5                         | 2.3           | 2.1               | 1.8         | 1.5          |       |  |  |  |

# **B.** Possibility No.1 in case of an increase in Wolf's feed base (share of losses to Wolf: +0.02 for Elk and +0.02 for

Boar), i.e. losses of Elk and Boar to Wolf at respectively 7% and 5%.

| Age groups of Wolf                              | young wolves<br>0-1 | yearlings 0-1 | adults 2-3 | adults 3-5 | adults 5-8 | adults 8-12 | Total   |
|-------------------------------------------------|---------------------|---------------|------------|------------|------------|-------------|---------|
| Average annual Wolf population                  | 7.4                 | 3.7           | 1.1        | 2.0        | 2.9        | 1.0         | 18.2    |
| Annual (current)<br>population, head            | 7.4                 | 3.7           | 1.1        | 1.0        | 1.0        | 0.3         |         |
| Annual meat<br>requirements per one<br>wolf, kg | 300                 | 450           | 600        | 900        | 1,200      | 1,350       |         |
| Meat per Wolf<br>population, kg                 | 2,234.1             | 1,675.6       | 643.6      | 1,834.2    | 3,485.0    | 1,350.0     | 11222.5 |

|                                           | Elk  | Boar | White | Brown | Beaver | Total |
|-------------------------------------------|------|------|-------|-------|--------|-------|
|                                           |      |      | Hare  | Hare  |        |       |
| Projected harvesting share, at the lowest | 0.07 | 0.15 | 0.04  | 0.04  | 0.05   |       |
| Illegal hunting share, at the lowest      | 0.14 | 0.20 | 0.15  | 0.15  | 0.10   |       |

9088



Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u>

Published By: Blue Eyes Intelligence Engineering & Sciences Publication



| Losses to Wolf, at the lowest                            | 0.07    | 0.05  | 0.07  | 0.07  | 0.10 |          |
|----------------------------------------------------------|---------|-------|-------|-------|------|----------|
| Projected harvesting, head                               | 33.6    | 54.0  | 192.0 | 18.0  | 1.5  |          |
| Illegal hunting, head                                    | 67.2    | 72.0  | 720.0 | 67.5  | 3.0  |          |
| Losses to Wolf, head                                     | 33.6    | 18    | 336.0 | 31.5  | 3.0  |          |
| Average meat weight per one<br>head for wolves' feed, kg | 280.0   | 44.0  | 2.6   | 3.3   | 12.7 |          |
| Meat for Wolf, kg                                        | 9,408.0 | 792.0 | 882.0 | 102.4 | 38.1 | 11,222.5 |

## C. Possibility No.2 in case of an increase in Wolf's feed base (share of losses to Wolf: +0.04 for Elk and +0.04 for

Boar), i.e. losses of Elk and Boar to Wolf at respectively 9% and 7%.

| Age groups of Wolf                        | young wolves<br>0-1 | yearlings<br>0-1 | adults<br>2-3 | adults 3-5 | adults<br>5-8 | adults 8-12 | Total    |
|-------------------------------------------|---------------------|------------------|---------------|------------|---------------|-------------|----------|
| Average annual Wolf population            | 9.6                 | 4.8              | 1.4           | 2.7        | 3.8           | 1.0         | 23.3     |
| Annual population, head                   | 9.6                 | 4.8              | 1.4           | 1.3        | 1.3           | 0.3         |          |
| Annual meat requirements per one wolf, kg | 300                 | 450              | 600           | 900        | 1,200         | 1,350       |          |
| Meat per Wolf population, kg              | 2,882.1             | 2,161.5          | 845.5         | 2,409.7    | 4,578.5       | 1,350.0     | 14,227.3 |

|                                                          | Elk      | Boar    | White | Brown | Beaver | Total    |
|----------------------------------------------------------|----------|---------|-------|-------|--------|----------|
|                                                          |          |         | Hare  | Hare  |        |          |
| Projected harvesting share, at the lowest                | 0.07     | 0.15    | 0.04  | 0.04  | 0.05   |          |
| Illegal hunting share, at the lowest                     | 0.14     | 0.20    | 0.15  | 0.15  | 0.10   |          |
| Losses to Wolf, at the lowest                            | 0.09     | 0.07    | 0.07  | 0.07  | 0.10   |          |
| Projected<br>harvesting, head                            | 33.6     | 54.0    | 192.0 | 18.0  | 1.5    |          |
| Illegal hunting, head                                    | 67.2     | 72.0    | 720.0 | 67.5  | 3.0    |          |
| Losses to Wolf, head                                     | 43.2     | 25.2    | 336.0 | 31.5  | 3.0    |          |
| Average meat weight per one<br>head for wolves' feed, kg | 280.0    | 44.0    | 2.6   | 3.3   | 12.7   |          |
| Meat for Wolf, kg                                        | 12,096.0 | 1,108.8 | 882.0 | 102.4 | 38.1   | 14,227.3 |

## **IV. CONCLUSION**

The discussed Predator-Prey EMM allows for a wider scope of modelling regarding the relations of antagonistic animals (Predator-Prey model) when compared to the classical

Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: www.ijrte.org

Lotka-Volterra model. The Predator-Prey EMM enables to model a full-fledged Predator-Prey system in its full diversity,

i.e. a system of several populations of Prey and Predator.

& Sciences Publication

Published By:



9089

The model allows describing populations in line with the sex-age structure, which enables full-fledged modelling of a population's biological turnover. The sex-age differentiation of game animals allows to fine-tune technical and economic coefficients for relative consumption and produce output in the analysed Predator-Prey relations.

The proposed Predator-Prey EMM allows to calculate the Predator and Prey populations in sex-age structures for various possibilities of changes in the respective conditions and to track population changes for Prey and Predator in their mutual relation.

The discussed Predator-Prey EMM enables a variety of options for further development. Thus, adding feed bases to the Predator-Prey EMM would completely provide for territorial analyses of specific biosystems in their full variety and functioning.

#### REFERENCES

- Tkachenko V.V., Lukyanenko T.V., Shadrina Zh.A. "A Set of Economic and Mathematical Models for Assessment of Agricultural Crop Cultivation Technologies", *International Journal of Recent Technology* and Engineering, Vol.8 (2), 2019.
- Kiseleva I.A., Kuznetsov V.I., Sadovnikova N.A., Chernysheva E.N., Androshina I.S. "Mathematical Modeling of Investment Risks", *International Journal of Innovative Technology and Exploring Engineering*, Vol.8 (7), 2019.
- Dagaev A.M., Novikov A.V., Afonin M.V., Maximov D.A., Golubtsova E.V. "Systems Engineering: Tax Risk Peculiarities in Project Execution", *International Journal of Engineering and Advanced Technology*, Vol.8 (5), 2019.
- Kaledin, A.P., Filatov A.I., Ostapchuk A.M. "Osnovy okhotnichego resursovedeniya" [Basic hunting resource studies], Reutov: ERA Publishing house, 2018, p. 344
- Kaledin, A.P., Abdulla-Zade E.G., Ostapchuk A.M., Filatov A.I., Vachugov D.D. "Prognozirovanie dinamiki populyatsii kabana v Podmoskove na osnove matrichnoi modeli" [Forecasting boar population dynamics in the Moscow region based on the matrix model], *Mezhdunarodnyi nauchnyi zhurnal* [The International Scientific Journal], 3, 2016, pp. 30-35.
- Kaledin, A.P., Abdulla-Zade E.G., Nikolaev A.A., Filatov A.I., Vachugov D.D. "Model dinamiki populyatsii losya v Podmoskove" [Population dynamics model for elk in the Moscow region], *Mezhdunarodnyi tekhniko-ekonomicheskii zhurnal* [International Technical-Economic Journal], 3, p. 2016.
- Kaledin, A., Filatov A., Ostapchuk A., Romanov A., Moroz S. "Modelirovanie dinamiki chislennosti kabana kak obekta okhoty i nagruzki populyatsii na kormovuyu bazu v OOO Sknyatinskoe okhotniche khozyaistvo Tverskoi oblasti" [Modelling the dynamics of boar population as a hunting target and the population load on the feed base in Sknyatinskoe okhotniche khozyaistvo, OOO, of the Tver region], *Glavnyi zootekhnik* [Head zootechnician], 9, 2018, pp. 41-52.
- Kaledin, A., Filatov A., Ostapchuk A. "Prognozirovanie dinamiki chislennosti okhotnichikh zhivotnykh v Rossiiskoi Federatsii na osnove modelnykh eksperimentov" [Forecasting game animal population dynamics in the Russian Federation based on modelling experiments], *Mezhdunarodnyi nauchnyi zhurnal* [The International Scientific Journal], 2, 2017, pp. 66-74.
- Kaledin, A., Filatov A., Ostapchuk A., Anashkina E. "Modelirovanie dinamiki chislennosti kabana v Yaroslavskoi oblasti na granitse depopulyatsii" [Modelling of boar population dynamic in the Yaroslavl region at the depopulation threshold], *Mezhdunarodnyi tekhniko – ekonomicheskii zhurnal* [International Technical-Economic Journal], 3, 2017, pp. 64-68.
- Kaledin A., Filatov A., Nikolaev A., Ostapchuk A., Anashkina E. "Regionalnyi aspekt prognozirovaniya dinamiki chislennosti losya v Yaroslavskoi oblasti na osnove modelnykh eksperimentov" [Regional aspect of forecasting elk population dynamics in the Yaroslavl region based on modelling experiments], *Mezhdunarodnyi nauchnyi zhurnal* [The International Scientific Journal], 3, 2017, pp. 43-47.
- 11. Kaledin, A.P., Yuldashbaev Yu.A., Filatov A.I., Demin V.A., Ostapchuk A.M., Anashkina E.N., Kubatbekov T.S. "Optimizing the Economic Use of Populations of Game Animals in the Region (by the

Retrieval Number: D4540118419/2019©BEIESP DOI:10.35940/ijrte.D4540.118419 Journal Website: <u>www.ijrte.org</u> Example of the Yaroslavl Region)", Journal of Pharmaceutical Sciences and Research, Vol 10 (10), 2018, pp. 2555-2558.



Published By: Blue Eyes Intelligence Engineering & Sciences Publication