

Development of Parameters of A Gear Spring Harrow by Planning An Experiment

Gennady Maslov, Alexey Palapin, Valery Tsybulevsky, Valery Lavrentiev, Elena Yudina

Abstract: The article presents a method for developing parameters and operating modes of a gear spring harrow using a three-factor experiment of the B_k plan. The regression equation of the machine's working process, its optimal value (specific traction resistance 432.8 N, angle of inclination of the teeth of the harrow 61.9 degrees, angle of grinding of the tooth 20.98 degrees) and operating parameters (operating speed of the unit 11.7 km / h). The dependences of the response function (specific traction resistance of the tooth-spring harrow) on its parameters and operating modes are represented by mini-max. Hypersurface plots. To determine the nature of the response surface in canonical form near the optimum, two-dimensional sections of its surface are constructed with a family of conjugated isolines, with the help of which the interaction of factors is studied.

Keywords : experimental design, regression equation, response function, factors, analysis, hypersurfaces, two-dimensional sections.

I. INTRODUCTION

Optimization of the parameters of machines and assemblies engaged in the implementation of agricultural field work is an urgent task to increase the efficiency of use of equipment and reduce the cost of production of field products [1,2,3]. New resource-saving machine technologies [4,5,6] and energy-saving machine-tractor units ensure high competitiveness of manufactured products. The tasks of science are to find effective methods for creating a new generation of technology, reliable substantiation of their parameters and operating modes. The purpose of our article is to demonstrate the role of planning a multifactor experiment in increasing its efficiency using an actual gear-spring harrow

Manuscript published on November 30, 2019.

* Correspondence Author

Gennady Maslov*, department of operation machine and tractor park, Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia. Email: eksp-mtp@kubsau.ru

Alexey Palapin, department of processes and machines in agribusiness, Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia. Email: eksp-mtp@kubsau.ru

Valery Tsybulevsky, department of tractors, cars and technical mechanics, Kuban State Agrarian University named after I.T. Trubilin. Email: eksp-mtp@kubsau.ru

Valery Lavrentiev, Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia. Email: eksp-mtp@kubsau.ru

Elena Yudina, department of operation machine and tractor park, Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia. Email: eksp-mtp@kubsau.ru

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an [open access](#) article under the CC-BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

machine as an example. Show at what optimal design and operational parameters of the harrow its effective operation is ensured with a minimum specific resistance.

II. MATERIALS AND METHODS

Substantiation of the design and operating parameters of a gear spring harrow as an object of research was carried out by

the method of planning a multifactor experiment [7, 8, 9] using the computer programs developed by us to analyze the obtained dependencies [10].

To set up a three-factor experiment, we chose a symmetric compositional plan of type B_k , whose stellar points are ± 1 [9]. Factors, intervals and levels of their variation for the experiment are presented in table 1.

Table - 1: Factors, Intervals, and Levels of Variation

Factors	Coded designation	Variation Intervals	Factor variation levels		
			- 1	0	+ 1
The angle β of the tilt of the spring harrow tooth, deg	x_1	30	30	60	90
The angle γ of the grinding of the tooth, deg.	x_2	10	10	20	30
Operating speed V of the movement of the unit, km / h	x_3	5	5	10	15

The levels of variation of the factors are selected taking into account the fulfillment of agrotechnical requirements for the quality of crushing of the soil, the uniformity of the depth of processing, the destruction of weeds and the evenness of the field surface.

Factors were determined as a result of previously conducted univariate experiments, as well as their fixed values at optimal levels in terms of specific traction resistance of a gear-spring harrow. The controlled factors (Table 1), in our opinion, have a significant effect on the specific traction resistance of the gear-spring harrow that we upgraded according to the patent according to the patent. Its other parameters, in addition to the width of the aggregate, do not affect the value of the specific traction resistance of the harrow. The upper and lower levels of factors are also taken into account the quality of the harrow. The first factor, the angle of inclination β of the harrow tooth was regulated during the experiment by turning the ridge with spring teeth rigidly fixed on it.

Development of Parameters of A Gear Spring Harrow by Planning An Experiment

The angle was measured with a digital goniometer. The angle of grinding of the tooth was set by replacing the teeth on the bed with the corresponding angle according to the design of the experiment. The operating speed V of the movement of the unit was established using the tractor's gearbox, the amount of fuel supplied and refined by measuring with a stopwatch the time of movement of the unit at a distance of 50 m with the direction of movement "there" and "back". Dividing the distance by time, we got the speed of movement.

The planning matrix of the three-factor experiment provides for 14 experiments with various combinations of natural values of variables and values of the response function - specific traction resistance of the tooth-spring harrow (N / m).

When modeling the process of work on the field of the experimental setup, a second-order polynomial with three variables (β , γ , V) was used for the response function. After mathematical processing of the obtained experimental data on the developed computer program, we obtained a regression equation with coded values of factors (1):

$$y = 432,62 + 2x_1 + x_2 + 2,5x_3 - 15,75 \\ x_1x_2 - 18,75x_1x_3 - 14,25x_2x_3 + \\ + 1,375x_1^2 + 2,375x_2^2 + 0,875x_3^2, \quad (1)$$

where y is the specific traction resistance of the gear spring harrow, N / m; x_1 is the encoded value of the angle β of the inclination of the teeth of the harrow, deg ; x_2 is the encoded value of the angle γ of the grinding of the tooth, deg ; x_3 - coded value of the operating speed V of the unit, km / h.

Equation (1) with the coded values of the factors was transferred to equation (2) with the actual values:

$$x_1 = 30x_1 + 60, \quad x_2 = 10 + x_2, \quad x_3 = 5x_3 + 10, \quad (2)$$

where x_1 is the encoded value of the angle β of the inclination of the teeth of the spring harrow, deg ; x_2 is the encoded value of the angle γ of the grinding of the tooth, deg ; x_3 - coded value of the operating speed V of the unit, km / h.

According to experimental design theory [7 – 9], it is necessary to verify the obtained coefficients in the regression equation (1) for significance, after having calculated their confidence interval using Student's criterion. As a result of the calculations, it was found that all the coefficients of the regression equation (1) were significant:

$$db_0 = 3,69, \quad db_i = 0,65, \quad db_{ij} = 0,59, \\ db_{ii} = 0,69, \quad \text{at } t = 2,57$$

To test equation (1) for adequacy according to the Fisher criterion according to the developed computer program, the obtained experimental data were used in the center of the plan to find the variance of the experiment. The natural values of the variables from experience in the center of the plan are presented in table 2.

Table - 2: Natural values of variables from experience in the center of the plan

Coded value of variables	The natural value of variables	Specific traction
--------------------------	--------------------------------	-------------------

x_1	x_2	x_3	the angle β of the inclination of the working bodies, deg.	angle for sharpening the tooth spring harrow, deg.	operating speed V of the unit, km / h	resistance of a gear-spring harrow R, kN / m
0	0	0	60	20	10	432
0	0	0	60	20	10	431
0	0	0	60	20	10	429
0	0	0	60	20	10	431
0	0	0	60	20	10	430

After calculation, the dispersion of the experiment was obtained, $S_y^2 = 1,3$ $F_{\text{tab}} = 4.88$, $F_{\text{cal}} = 3.98$. Since $F_{\text{tab}} \geq F_{\text{cal}}$, equation (1) is adequate.

Differentiating equation (1) with respect to each of their variables and equating the derivatives to zero, we obtained a system of linear equations:

$$\begin{cases} \frac{dy}{dx_1} = 2 + 2,75x_1 - 15,75x_2 - 18,75x_3 \\ \frac{dy}{dx_2} = 1 - 15,75x_1 + 4,75x_2 - 14,25x_3 \\ \frac{dy}{dx_3} = 2,5 - 18,75x_1 - 14,25x_2 + 1,75x_3 \end{cases} \quad (3)$$

Solving the resulting system of equations (3), we obtained the coordinates of the center of the response surface: $x_1 = 0.0623$, $x_2 = 0.0976$, $x_3 = 0.0388$.

Substituting the values of the variables x_1 , x_2 , x_3 into the regression equation (1), we obtained the values of the optimization parameter (specific drag of the harrow) in the center of the response surface. We also found the value of the response at a new origin, for which the free term of the canonical equation $Y_S = 432,776$ was adopted.

We carry out the canonical transformation of formula (1). To do this, transfer this equation (1) to a new coordinate system and rotate the coordinate axes, after which equation 1 is simplified to the form (4):

$$Y - Y_S = B_{ii}x_i^2 + B_{jj}x_j^2, \quad (4)$$

where B_{ii} , B_{jj} - canonical equation coefficients.

We found the rotation angle α of the initial coordinate axes of the response surface before aligning with the main axes of the figure. Its value was $\alpha = 41.99$ degrees.

After transformations, equation 1 in canonical form takes the form (5):

$$Y - 432,776 = 1,375x_1^2 - 5,382x_2^2 + 8,632x_3^2, \quad (5)$$

Further investigation of the response surface (4) is carried out using two-dimensional sections, which are formed by the intersection of the response surface by the planes: x_1 S x_2 , x_1 S x_3 , x_2 S x_3 . Two-dimensional sections allow us to establish the interaction of two factors of the regression equation when the third factor is in the center of the experimental design. Using the regression equation (5) in canonical form and the found coordinates of the center of the response surface, we find the value of the optimization parameter and all the corresponding variable values.

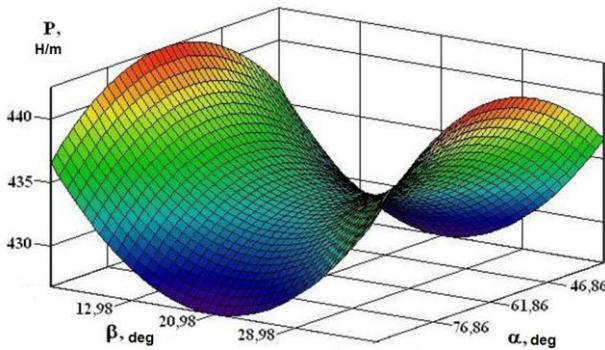
Below are the results of the obtained optimal parameters of the harrow with the optimal value of specific traction resistance.

III. RESULTS AND DISCUSSIONS

An analysis of the interaction of factors was performed using two-dimensional sections of the response surface (4) with the indicated planes ($x_1S x_2$, $x_1S x_3$, $x_2S x_3$). Consider the cross section of the response surface by the first $x_1S x_2$ plane. To do this, substitute $x_3 = 0.0338$ in equation 1 and get:

$$Y_{12} = 432,708 + 1,365x_1 + 0,518x_2 - 15,75x_1x_2 + 1,375x_1^2 + 2,375x_2^2, \quad (6)$$

where Y_{12} – specific drag of a spring-loaded harrow with the interaction of 1 and 2 factors, when the 3rd is in the center of the experimental design.

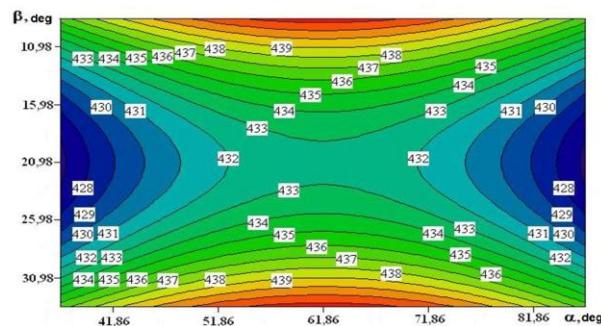

Having performed the canonical transformation and solving the system of linear equations, we found the coordinates of the center of the response surface: $x_1 = 0.0623$, $x_2 = 0.0976$.

Substituting the found values of x_1 and x_2 into equation (5), we obtained the value of the optimization parameter in the center of the response surface $Y_S = 432.776$ with $x_3 = 0.0623$.

The angle of rotation of the coordinate axes, which is equal to 43.18 degrees, was determined, and the coefficients for unknowns in canonical form will be equal: when $B_{11} = -6.016$; at $B_{22} = 9.766$. Now, taking into account these coefficients, the response surface equation in canonical form will have the form:

$$Y_{12} - 432,776 = -6,016x_1^2 + 9,766x_2^2, \quad (7)$$

The resulting response surface (Fig. 1) is a hyperboloid of revolution, and the coefficients of the regression equation (7), having different signs confirm this. The optimal value of the response function is at the point with coordinates: $x_1 = 61.86$ degrees, $x_2 = 20.98$ degrees.


Fig. 1. The response surface of the dependence of the specific traction resistance of the harrow on the angle of inclination of the working bodies and the angle of grinding of the tooth of the spring harrow

Given the values of the variables and substituting them in the canonical equation (7), we obtained a family of conjugated isolines (Fig. 2). The contours obtained as a result of the cross section of the response surface are elongated along the axis corresponding to the factor x_1 — the angle of inclination of

the working elements of the harrow. Therefore, this factor has a lesser effect on the specific traction resistance of the tooth-spring harrow than the second factor x_2 , the angle of sharpening of the teeth of the harrow.

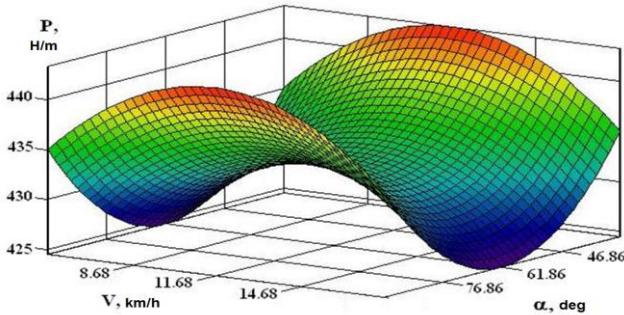
When $x_3 = 0.0338$ in coded form, i.e., when the specific drag of the harrow in the center of the plan is 432.776 N/m , the inclination angle β of the working bodies is 61.86 degrees, and the angle of sharpening of the teeth of the harrow is $\gamma = 20.98$ degrees

A two-dimensional cross section of the response surface of the $x_1 S x_3$ plane is shown in Figure 2.

Fig. 2. Two-dimensional cross-section of the response surface of the dependence of the specific traction resistance of the tooth-spring harrow on the angle β of the inclination of the working bodies and on the angle γ of the grinding of teeth

The cross section in Fig. 2 is obtained by substituting the values of factor $x_2 = 0.0976$ into the regression equation (1). Then the regression equation took the form (8):

$$Y_{13} = 432,743 + 0,462x_1 + 1,109x_3 - 18,75x_1x_3 + 1,375x_1^2 + 0,875x_3^2, \quad (8)$$


After performing canonical transformations and solving a system of linear equations, we found the coordinates of the center of the response surface: $x_1 = 0.0623$, $x_3 = 0.0338$. Substituting the found value of x_1 and x_3 into equation (1), we determined the value of the optimization parameter in the center of the response surface at $x_2 = 0.0976$. The value of the optimization parameter is the specific resistance of the spring-loaded harrow $Y_{13} = 432.776 \text{ N/m}$. The angle α of rotation of the coordinate axes is equal to 44.24 degrees, and the regression coefficients in canonical form are equal to: at $x_1 B_{11} = 10.503$; $x_3 B_{33} = -8.253$.

Thus, we got the response surface equation in canonical form:

$$Y_{13} - 432,776 = 10,503x_1^2 - 8,253x_3^2, \quad (9)$$

The response surface has the form of a minimax rotation hyperboloid (Fig. 3), since the coefficients of the regression equation B_{11} and B_{33} are of different signs.

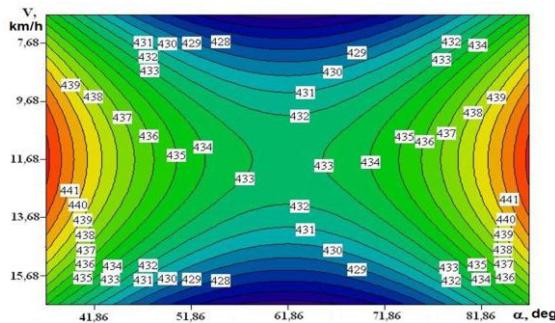

Development of Parameters of A Gear Spring Harrow by Planning An Experiment

Fig. 3. The response surface of the dependence of the specific traction resistance of the spring-loaded harrow on the angle of inclination of the working bodies and the working speed

The optimal value of the response function is at the point with coordinates: $x_1 = 61.86$ degrees, $x_3 = 11.68$ km / h.

A two-dimensional cross section of the response surface with the x_1 S x_3 plane (Fig. 4) was considered at the optimal value of the angle of sharpening of the teeth of the harrow, when $x_2 = 0.0976$. The cross sections of the response surface in the experiment area give isolines (Fig. 4), which implies that a change in the working speed of the harrow affects less specific drag of the harrow than the angle of inclination of the working bodies, because the elongation of the isolines is greater along the x_3 axis, and the coefficient of the regression equation is n absolute value $|B_{11}| \geq |B_{33}|$

IV. CONCLUSIONS

The possibility of using the method of planning a multifactor experiment for the study of agricultural machinery has been proved. The method of planning a three-factor experiment according to the B_k plan determined the optimal parameters of the working bodies of the gear-spring harrow, subject to the qualitative fulfillment of agrotechnical requirements.

According to the regression equation obtained as a result of theoretical and experimental studies, the parameters of the harrow teeth and its operation mode are justified according to the criterion of minimum traction resistance of the tooth-spring harrow: the angle of inclination of the teeth was 61.86 degrees, the angle of grinding of teeth 20.98 degrees, the working speed V the harrow movement is 11.68 km / h, and the optimal specific traction resistance is $R = 432.776$ N / m.

Valery Tsybulevsky, candidate of technical sciences, associate professor of the department of tractors, cars and technical mechanics, Kuban State Agrarian University named after I.T. Trubilin.

Valery Lavrentiev, graduate student in the scientific specialty 35.06.04 - technology, means of mechanization and power equipment in agriculture, forestry and fisheries, Kuban State Agrarian University named after I.T. Trubilin.

Elena Yudina, candidate of technical sciences, associate professor, department of operation machine and tractor park, Kuban State Agrarian University named after I.T. Trubilin.

REFERENCES

1. Gennady Maslov, Valeriy Tsybulevskiy, Nikolai Rinas, Elena Yudina. (2019). Optimization Of Flow And Rhythm Of Work Of The Harvest-Transport Link. INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2019.V.6. No. 4. P. 7053–7059.
2. G.G. Maslov, E.I. Trubilin, E.V. Truflyak. Parameters Optimization for Multifunctional Aggregates in Plant Growing Mechanization. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016. No7 (3). P. 1919-1926.
3. Gennady Maslov, Valery Lavrentiev, Valery Tsybulevsky, Elena Yudina, Vasily Tkachenko Optimization of Parameters of a Multifunctional Unit Based on a Spring Harrow. International Journal of Engineering and Advanced Technology, Volume 9 Issue 1. P. 1915-1918.
4. Maslov G.G., Trubilin E.I., Yudina E.M., Rinas N.A. Concept Of Creating Energy-Resource-Saving Technologies For Harvesting Grain With Multifunctional Aggregates. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018.Vol. 9. No. 4. P. 623-630.
5. Maslov G.G., Tkachenko V.T., Yudina E.M., Kadyrov M.R., Kalitko S.A. The Improvement Of The Technology Of Winter Wheat Grain Production For The Purpose Of Energy Saving. Biosci Biotechnol Res Asia 2015; 12 (3). P.2071-2080
6. Maslov G.G., Yudina E.M., Serguntsov A.S., Evglevsky R.O. Rational System of Multifunctional Aggregates for Mechanization of Plant Growing. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018.Vol. 9. No. 5. P. 1177-1185.
7. Nalimov V.V., Chernova N.A. 1965. Statistical methods for planning extreme experiments. -M.: Science.
8. V.A. Adler, E.V. Markova, Yu.V. Granovsky. 1971. Planning an experiment in the search for optimal conditions. - M.: Science.
9. Maslov G.G., Didmanidze O.N., Tsybulevsky V.V. 2007. Optimization of parameters and operating modes of machines by the method of experimental design. Study Guide for Agricultural Challenge Students. Moscow.
10. Tsybulevsky V.V. The parameters of the processing of the near-trunk zone of fruit trees with herbicides. Diss. for a job. scientist step. Cand. tech. Sciences: 05.20.01. Krasnodar, 2007.209 p.

AUTHORS PROFILE

Gennady Maslov, doctor of technical sciences, professor, department of operation machine and tractor park, Kuban State Agrarian University named after I.T. Trubilin.

Alexey Palapin, candidate of technical sciences, associate professor of the department of processes and machines in agribusiness, Kuban State Agrarian University named after I.T. Trubilin