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 
Abstract: Tool wear monitoring and control in the machining 

operations is necessary to enhance the productivity and decrease 
the operation cost. The identification of CNC machine process 
model and its control is so difficult due to its high non-linearity. 
Therefore, neural networks (NNs) one of the non-linear 
identification techniques, have been applied in addition to system 
identification field for the identification and control of nonlinear 
systems. In this paper, auto-regression recurrent neural network 
model structures NNARX and NNARMAX is proposed for CNC 
machine modeling with its cutting condition and vibration signals 
as input to obtain an accurate nonlinear system model for 
prediction of  tool wear and surface roughness. Finally, the 
modeled neural network model structures for prediction of tool 
wear and surface roughness is validated with the observed tool 
wear and surface roughness for the accuracy analysis of modeled 
neural network model structures. 

Keywords: CNC machine, NNARMAX, NNARX, Error 
analysis. 

I. INTRODUCTION 

The international research organization CIRP made a study 
of the situation considering the increase in demand for 
effectual industrial tool condition monitoring systems [1]. It 
provides the current comprehensive survey of sensor 
technologies, signal processing, and decision making 
strategies for process monitoring including tool condition 
monitoring. These days one of the most important machining 
processes in mechanized companies is turning. Turning is 
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affected by many factors such as the speed, feed rate and 
depth of cut, which are the input parameters [2]. The desired 
product of dimensional accuracy and less surface roughness 
is influenced by the process variables which are the responses 
and the functions of these input parameters. In the cutting  

region of turning process there are several process 
variables, such as cutting forces, vibrations, acoustic 
emission, noise,  
temperature, surface finish, etc., that are influenced by the 
cutting tool state and the material removal process conditions.  
In recent years awareness has been paid to the acoustic 
emission and vibration problem in CNC machine tools that 
affects tool life and hard work have been made and still are 
made in several directions to hold back them to considerably 
low levels. The tool wear and surface roughness of work 
piece under dissimilar cutting conditions in machining by 
means of acoustic emission (AE) and vibration signature in 
turning are studied in [2, 3]. The modeling, identification and 
control of the CNC machine is highly complex as it is highly 
nonlinear and the vibrations produced by the machine tool 
itself affects accuracy of the CNC machine process. Many of 
the author’s proposed neural networks based nonlinear auto 

regressive models such as NNARX, NNARMA, 
NNARMAX, NNOE...etc. for highly nonlinear process that 
includes pH process [4,5], essential oil extraction system 
[6-9], rainfall runoff modeling [10], tower bridge movements 
[11],thermal behavior prediction [12],pneumatic system [13], 
Servo-Hydraulic Vehicle Suspension System [14], Speech 
signal generating system [15]..Etc. 

In this paper nonlinear identification of CNC machine 
process using auto regression recurrent neural network model 
structures NNARX (Neural Network Auto-Regressive model 
with eXogenous inputs) and NNARMAX (Neural Network 
Auto-Regressive Moving Average model with eXogenous 
inputs) for the cutting conditions and the results are 
discussed. 

II.  COMPUTER NUMERICAL CONTROL 

MACHINE 

Computer Numerical Control (CNC) is one in which the 
functions and motions of a machine tool are controlled using 
prepared program containing coded alphanumeric data. The 
turning operation is done in CNC machine for various cutting 
conditions (speed, feed and depth of cut) to monitor tool 
condition.  
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The tool condition can be monitored by means of two 
approaches – direct and indirect approach. The indirect 
measurement techniques such as vibration signals and 
acoustic emission signals generated during turning operation 
are measured by sensors and acquired through DAQ for 
further process.  

The acquired signals are analyzed to extract features 
such as RMS, SD, Mean, Range, and Median…etc. The 
extracted features along with cutting conditions are hardened 
to predict tool wear. The predicted tool wear with its inputs 
predicts surface roughness. The amplitude of underdone 
vibration signal mechanism and corresponding tool wear, 
surface roughness at different cutting conditions is tabulated 
from reference [2]  in table 1. 

TABLE I. Experimented data 
Cutting conditions Vibratio

n signal 
(v) 

Tool 
wear 
(mm) 

Surface 
roughne
ss 
(µm) 

Speed 
(m/ 
min) 

Feed 
(mm/ 
rev) 

Doc 
(mm) 

170 0.32 1 5.574 0.151 3.505 
215 0.32 1 9.251 0.165 4.212 
250 0.32 1 8.747 0.139 3.981 
270 0.32 1 14.873 0.183 4.663 
250 0.20 1 8.865 0.105 3.224 
250 0.28 1 9.675 0.142 3.507 
250 0.50 1 11.876 0.155 4.118 
250 0.32 0.5 12.619 0.076 4.373 
250 0.32 2 16.225 0.194 5.098 

III. NONLINEAR MODEL STRUCTURES BASED ON 

NEURAL NETWORK 

A linear dynamic system can be represented by 

 
 
Where  refers to the ny dimensional output, u(t) refers to 
the nu dimensional input, e(t) refers to white noise,  is the 
model parameter and  refers to backward shift operator. 

NNARX and NNARMAX MODEL STRUCTURE 
 
The ARX model structure is given by, 

 
 
The ARMAX model structure is given by, 

 
 
Where the polynomials  and are given by 

 
 

 
 
To estimate nonlinear part of ARX and ARMAX structure, 
the neural network can be used. NNs based Modeling 
techniques have ensured to be quite useful for building 
excellence models from measured data. The Multilayer 
Perceptron (MLP) network is most likely considered as 
member of the neural network family. The neural network 
based ARX and ARMAX model structure is denoted as 
NNARX and NNARMAX. The general model structure of 
NNARX and NNARMAX is shown in Fig. 1(a) and 1(b) 
respectively. 

 
Fig. 1(a). General NNARX model structure 

 

 
Fig. 1(b). General NNARMAX model structure 

NNARX Regression vector is given by 
 

 
 

NNARMAX Regression vector is given by 
 

 
 

 
Where is the prediction error, 
 

 
 

The predictor of NNARX and NNARMAX model 
structure is given by equation 
 

 
 
Where is a vector containing the regressors,  is a vector 
containing the weights and g is the function realized by the 
neural network 
 

The NNARX model structure predicts output by 
concerning the current output with the combination of past 
inputs and outputs while NNARMAX model structure 
predicts output by relating the current output with the 
combination of past inputs, outputs and residuals. A predictor 
without feedback is seen only in the NNARX model.  

IV. NNARX AND NNARMAX MODEL FOR 

PREDICTION OF TOOL WEAR AND SURFACE 

ROUGHNESS 

The nonlinear identification of CNC machine process 
consists of four steps- experimentation to obtain data set, 
model structure selection, model training and model 
validation. 
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A. Experimentation 

The experiment conducted in CNC machine for various 
cutting conditions produces a data set for prediction of tool 
wear and surface roughness. The data set consists of cutting 
conditions- speed, feed, and depth of cut, RMS value of 
vibration signals, manually observed tool wear and surface 
roughness. Then the obtained data set is divided into two for 
training and validation purposes.  

The input-output sequences of the data set for tool wear 
prediction with speed, feed, and depth of cut, RMS value of 
vibration signals as input are displayed using MATLAB 
shown in Fig. 2. 
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Fig. 2. Input-output sequence for tool wear. 

 
The input-output sequences of the data set for surface 

roughness prediction with speed, feed, and depth of cut, RMS 
value of vibration signals and predicted tool wear as input are 
displayed using MATLAB shown in Fig. 3. 
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Fig. 3. Input-output sequence for surface roughness 

The data set to be trained is scaled to zero mean and variance 
using dscale function before training to improve faster 
convergence and get better numerical stability 

B. Selection of model structure 

Once the data set is acquired, the next important step is model 
structure selection. Selection of model structure depends on 
the selection of a set of regressors and network architecture. 

The function lipschit is employed to determine the order of 
the system (regressors). 

1 2 3 4 5 6
10

-3

10
-2

10
-1

10
0

10
1

Number of past inputs and outputs

O
rd

e
r 

in
d
e
x

Order index vs. lag space

 
Fig. 4(a). Two Dimensional View of the Order of Index 

versus Lag Space for tool wear prediction 
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Fig. 4(b). Two Dimensional View of the Order of Index 

versus Lag Space for surface roughness prediction 
The plots of the order index founded on the assessed Lipschit 
quotients for the input - output pair combinations adjacent to 
the lag space (number of past inputs and outputs) ranging 
from 1 to 6 is shown in Fig. 4(a) and 4(b). The plot shows that 
both the tool wear and surface prediction system can be 
modeled by a second order model in view of the fact that the 
slope of the curve is decreases for model orders >= 2.This 
implies that the suitable number of past inputs and outputs is 
2. 

The model order selected for training NNARX 
model structure for tool wear prediction is [2,2 2 2 2,1 1 1 1] 
and for surface roughness prediction is [2, 4 1 1 1 1, 1 
1 1 1 1]. The model order selected for training 
NNARMAX model structure for tool wear prediction is [2 
,2 2 2 2, 2 , 1 1 1 1]and for surface roughness 
prediction is [2 ,4 1 1 1 1, 2, 1 1 1 1 1].The block 
diagram of NNARX and NNARMAX model structure for 
tool wear and surface roughness prediction is shown in Fig 
5(a) and 5(b) respectively. 
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Fig. 5(a). Block diagram of NNARX model structure for 

tool wear and surface roughness prediction 

 
Fig. 5(a). Block diagram of NNARMAX model structure 

for tool wear and surface roughness prediction 
 
The network architecture for all the selected regressors is 
constructed with 10 ‘tanh’ units and one linear output unit. 

The network architecture of NNARX and NNARMAX 
model structure for tool wear and surface roughness 
prediction is shown in Fig. 6(a)-6(d). 
 

 
Fig. 6(a). Network architecture of NNARX model 

structure for tool wear prediction 

 
Fig. 6(b). Network architecture of NNARX model 

structure for surface roughness prediction 

 
Fig. 6(c). Network architecture of NNARMAX model 

structure for tool wear prediction 

 
Fig. 6(b). Network architecture of NNARX model 

structure for surface roughness prediction 

C. Model training 

The selected model structures are trained using 
Levenberg-Marquardt algorithm for 200 iterations to 
generate NNARX models for prediction of tool wear and 
surface roughness. The fitness response for generated 
NNARX and NNARMAX models is shown in Fig. 7(a)-7(d). 
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Fig. 7(a). Fitness plot of NNARX model structure for tool 

wear prediction 
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Fig. 7(b). Fitness plot of NNARMAX model structure for 

tool wear prediction 
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Fig. 7(c). Fitness plot of NNARX model structure for 

surface roughness prediction 
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Fig. 7(d). Fitness plot of NNARX model structure for 

surface roughness prediction 
The fitness of NNARX and NNARMAX for tool wear in Fig. 
7(a&b) is converged between the 10e-4and 10e-5 orders and 
for surface roughness prediction Fig. 7(c&d) the fitness is 
converged between the 10e-3and 10e-4 orders. 

D. Model validation 

The network trained is validated with the model created with 
the fresh data set. The one-step ahead prediction, prediction 
Error, Auto correlation function of prediction error and 
cross-correlation between prediction error and input and a 
histogram plots are presented in Fig 8(a) – 11(c). 
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Fig. 8(a). one-step ahead prediction plot of NNARX 

model structure for tool wear prediction 
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Fig. 8(b). auto and cross correlation plot of NNARX 

model structure for tool wear prediction 
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Fig. 8(c). Histogram  plot of NNARX model structure for 

tool wear prediction 
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Fig. 9(a). one-step ahead prediction plot of NNARMAX 

model structure for tool wear prediction 
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Fig. 9(b). auto and cross correlation plot of NNARMAX 

model structure for tool wear prediction 
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Fig. 9(c). Histogram  plot of NNARMAX model structure 

for tool wear prediction 
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Fig. 10(a). one-step ahead prediction plot of NNARX 

model structure for surface prediction 
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Fig. 10(b). Auto and cross correlation plot of NNARX 

model structure for surface roughness prediction 
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Fig. 10(c). Histogram plot of NNARMAX model 

structure for surface roughness prediction 
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Fig. 11(a). one-step ahead prediction plot of NNARMAX 
model structure for surface prediction 
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Fig. 11(b). auto and cross correlation plot of NNARMAX 

model structure for surface roughness prediction 
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Fig. 11(c). Histogram plot of NNARMAX model 

structure for surface roughness prediction 
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For all the NN based nonlinear autoregressive models, the 
one-step ahead prediction output overlapped the observed 
output almost perfectly shown in Fig. 8(a), 9(a), 10(a), 

11(a).The Auto correlation function of prediction error and 

cross-correlation between prediction errors shown in Fig. 
8(b), 9(b), 10(b), 11(b) and input delivers that the correlation 
coefficients almost lie within their standard deviations. A 
histogram plots in Fig. 8(c), 9(c), 10(c), 11(c) shows the 
distribution of the prediction errors. Although the prediction 
errors are distribute to the left and right, the magnitude is so 
smaller to make much impact. 

V. RESULT ANALYSIS 

The performance of extracted linear models is compared 
using comparison criteria Normalized Sum of Squared Error 
(NSSE) and Final Prediction Error (FPE). The model is said 
to be accurate when the network trained estimates smallest 
NSSE and FPE. The NSSE is defined by the following 
equation 
 

 
Where, the error e is the difference between the observed 
output and the predicted output.  

 
Akaike's Final Prediction Error (FPE) is defined by 

the following equation: 
 

 
Where, v is the loss function, d is the number of estimated 
parameters, n is the number of values in the estimated data 
set. Table 1shows the number of epochs, NSSE and FPE for 
the NN based nonlinear models. 
 

TABLE II. Performance analysis 
 Tool wear prediction Surface roughness 

prediction 

 NNARX NNARM
AX 

NNARX NNARMAX 

NSSE 1.0834e-07 1.1078e-6 2.7324e-08 3.0023e-08 

FPE 0.0026 0.0079 10.8799 14.8974 

EPOCHS 95 108 112 114 

VI. CONCLUSION 

In this paper, auto-regression recurrent neural network model 
structures NNARX and NNARMAX are trained using 
Levenberg-Marquardt algorithm to establish CNC machine 
model for prediction of tool wear and surface roughness. The 
modeled neural networks are validated with the testing data 
set. The results of validation is inspected both visually and 
statistically in order to obtain accurate model. The 
performance criteria’s were used to compare the extracted 

linear models. Overall, results have shown that NNARX 
model structure generates accurate model with smallest 
NSSE and FPE while compared to NNARMAX model 
structure. 
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