

Soil Testing using Sensors with Android Application

S. Rajaprakash, S. Muthuselvan, K. Karthik, Niranjan kumar , Hemant Karmakar,

Abstract: With advancement in innovation different rural practices have moved from customary procedures to computerized methods like field water system framework. Numerous such horticultural parameters are being checked remotely to improve nature of cultivating. A standout amongst the most critical parameter in cultivating is soil fruitfulness for example proportion in which different supplement fundamental for yield is available in soil. To screen soil ripeness, pH of the dirt is most normally estimated. It is likewise a standout amongst the most helpful and educational soil parameters in view of its relationship to numerous parts of soil ripeness and plant development. In spite of its significance, the ramifications of lacking soil pH on rummage reaction, especially supplement use productivity, are frequently ignored. In the proposed framework we decide the normal level of essential soil supplements Nitrogen, Phosphorous and Potassium and decide the appropriate yields for the specific soil type. In this work it will break down soil supplement content at ongoing and make crop expectation. Framework will be based on Arduino. Framework will likewise propose the yields on premise decided PH of soil.

Index Terms: Soil Testing, Sensors, Soil Types, pH Value, Android Application

I. INTRODUCTION

In India Conventional cultivating practice includes human works for playing out a wide range of cultivating exercises like watering fields, developing harvests with required manures and so on. Soil investigation is a significant device for ranchers; it decides the sources of info required for effective and efficient generation.

Soil testing is primarily alluded as examination of a dirt example to decide the richness, supplement substance, arrangement and different attributes. In light of this ranchers are confronting issues in taking the dirt examples to the labs and testing them. So in this cutting edge soil testing innovation we make the sensors which help in detecting the properties of the dirt without being taken them to labs. In a large portion of

the cases Indian ranchers are oblivious about soil testing which fizzles them to test their dirts in labs, the application which we are making helps the ranchers in leading soil testing independent from anyone else. This will teach the ranchers about the need of soil testing, which help them in acquiring quality items. Without understanding the dirt attributes it is difficult to realize which crop development is appropriate for that specific soil. And furthermore as a result of proceeds with agrarian exercises the dirt will have lost its fruitfulness. Thus our undertaking causes the ranchers to comprehend the qualities of the dirt they are developing.

A legitimate soil test will guarantee the use of enough manure to meet the necessities of the yield while exploiting the supplements effectively present in the dirt. It will likewise enable you to decide lime prerequisites and can be utilized to analyze issue territories. Inspecting procedure is right; as the outcomes are just comparable to the example you take. Soil testing is likewise a necessity for homesteads that must total a supplement the board plan. Real supplements: Nitrogen (N), Phosphorus (P) and Potassium (K) Soil pH is the most regularly estimated soil properties. It is likewise a standout amongst the most helpful and enlightening soil parameters on account of its relationship to numerous parts of soil fruitfulness and plant development. In spite of its significance, the ramifications of lacking soil pH on search reaction, especially supplement use proficiency, are frequently disregarded. In Automated cultivating practice we mean to diminish human blunders by checking the dirt quality utilizing different soil sensor by means of cell phones and huge database. The key component of our framework is to decide reasonable harvests for current condition of soil. By computing supplement content in soil.

A. Soil Sensor

It is utilized to quantify the substance of water in the dirt. Water is the significant hotspot for plants development. This distinguishes the wet/dry state of the dirt as indicated by the need of yields. The sensor has two tests which are utilized to go current through soil while embedded the tests in the dirt. At the point when the dirt is wet it has less obstruction thus passes increasingly present though in dry condition the dirt has high opposition and goes less present through the dirt. The recognition of soil status is finished with knowing the obstruction valve.

B. Temperature Sensor

LM35 is utilized as temperature sensor which is incorporated circuit evaluated to work more than 50 degree to +155 degree Celsius. The temperature and dampness perusing worth are sent to client through IoT so client can realize the field conditions from anyplace.

C. Humidity Sensor

DHT11 is utilized to gauge the water vapor in air which characterizes the stickiness. On the off chance that there is change in temperature there will be change in dampness likewise, this happens when water system.

D. Wi-Fi Module

ESP8266 Wi-Fi module is an independent attachment equipped for facilitating an application. It is incorporated with TCP/IP convention stack. Every module is pre-customized with AT direction set firmware.

E. System Software

Assembling and examining the data from the sensors and controlling the various contraptions. Recognized data is accumulated from each sensor and sent to IoT, each examining is dealt with and outline is plotted in the Thing talk cloud.

F. Arduino Microcontroller

It is an open hotspot for both gear drive and programming drive with 8-piece ATmega328 a low control CMOS Controller reliant on RISC structure. Arduino Uno has world class with variety of choices, totally static action, and self programmable gleam program memory in system.

II. LITERATURE SURVEY

Hari Mohan Meena et.al. examine in his work about GIS-based soil richness maps are utilized as a choice help instrument for supplement the executives won't just be useful for embracing an objective methodology contrasted with rancher practices or cover utilization of state prescribed preparation however will likewise diminish the need for expand plot-by-plot soil testing exercises. Concentrate on about the pH of the dirt in natural way and the creator talk about the large scale and miniaturized scale supplements present in soil relies upon scopes of pH in the area of Dalla town, India [1].

H. Ramírez et.al has proposed a technique which won't influence the yield of the grapes. In his work he talk about abscisic corrosive and veraison phase of cabernet Franc grapes. Atulkumar H. Patel learn about the parameters (pH, EC, P, K and OC) and measurable examination of the dirt utilizing Pearson Correlation technique. He gathered the synthetic investigation of soil tests and finish up about the scopes of the parameter and furthermore the creator examine about the manure practice in soil [2].

In 2012 Jay Gholap et al. examined about soil characterization in different calculation and forecast. In his proposed work is have a place with soil testing utilizing middle squares relapse and he demonstrated it will give preferred outcome over the established straight relapse procedure [3].

Y Li et al 2017 IOP Conf. introduced a paper on dark soil testing. The test outcome demonstrated some important factors, for example, carbon dioxide, oxygen, temperature and dampness, pH esteem and microbial substance in dark soil that influence the development of plants are chosen and a sort of dark land dependent on information obtaining and transmission framework dependent on the Arduino advancement condition and the component development of

King view has been figured it out [4].

M Suchithra et al 2018 actualized shrewd horticulture methods utilizing IOT. IOT empowers the items to be detected and controlled remotely crosswise over existing system display. The paper includes sensors that sense the field parameters, for example, temperature, humidity, moisture and richness in the homestead. The detected qualities are approved and later sent to the WI-FI module and from WI-FI module the approved information are sent to the rancher's portable or PC utilizing cloud and additionally empowered continuous SMS module if field needs care [5].

A paper Published on Dec 05, 2018 Automated Soil Testing System for Agriculture has published on web. In This paper they concentrated on checking the dirt and its substance. Specifically, observing agrarian situations for different factors, for example, temperature, dampness, stickiness alongside different components can be of more importance. A customary way to deal with measure these variables in an agrarian situation implied people are taking estimations physically and checking the tangle different occasions. In this paper the dirt condition and supplements level in soil are examined by Arduino [6].

Nirdosh Kumar et al exhibited a paper on building up a totally robotized plant/crop watering framework. The fundamental inspiration driving this framework is to ration the wastage of water and to viably deal with the measure of watering of the plants. It likewise goes for decreasing human work, exertion and blunders because of human carelessness. It utilizes sunlight based boards to give capacity to the framework at daytime [7].

On walk 3 2017 Ms. G. Rekha M.E et al distributed a paper on Android Arduino Interface with Smart Farming System. In this remote sensor systems, it is a self arranging system of little sensor hubs conveying among themselves utilizing broadcasting signal, and send in ability to rationale, watch and understand the reason world. WSN gives an extension between the real goal and fundamental humankind. WSN enable the ability to see the prior inconspicuous at the fine choice above tremendous spatiotemporal equalization [8].

Henry Oppong Tuffour proposed a framework that Description of the spatial examples of soil properties at the field or watershed scale is essential for site explicit soil and crop management, and natural displaying. The investigation was directed to decide the spatial dissemination examples of soil physical properties in an agrarian field in the surface (0-19 cm) and subsurface (19-40 cm) layers. Elucidating insights and geo statistics were utilized to depict the sum and type of fluctuation and spatial dispersion examples of the dirt physical properties in the field [9].

K. Hannah Jyothir mayi proposed a framework that produce a dirt mass which can fulfill the three essential criteria. Initially, the decrease of ensuing settlement of the dirt mass, under working burdens. Besides, for the decrease in penetrability which will in this way stay away from developed of substantial water weights causing liquefaction issues and is additionally critical for holding water in case of earth dams. Thirdly, it is utilized for expanding the shear quality of the dirts.

In any case, the assurance of compaction qualities in research center is difficult [10].

Robert B. Cate Jr proposed in his paper that most soil test research centers partition soil test results into at least two classes to make manure suggestions. This is typically accomplished for the down to earth reason that it lessens the quantity of various proposals fundamental. Nonetheless, the reason for characterizing the distinctive classes (e.g., Very Low, Low, Medium, etc.) is regularly abstract or discretionary. This paper clarifies a basic, yet factually solid, strategy for setting as far as possible [11].

Manoj H G proposed in his task is that it distinguishes the dampness level in the dirt and help the rancher in numerous cultivating, as these days there is a rare for the labor in the field of horticulture, so the ranchers are searching for the innovation that is anything but difficult to deal with and which can substitute crafted by a work to improve things. Thinking about every one of these issues they have built up a gadget that recognizes the dampness level in the dirt when the devise is put in the field it works under three conditions wet, typical and dry conditions [12].

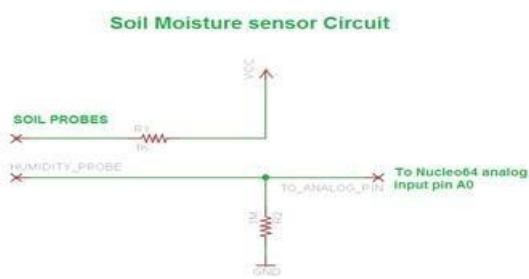
Rajaprakash et.al. Proposed a model building structure identification using iot with android application. To monitor the health of the building with help of sensor, IOT and mobile application [13].

Rajaprakash et.al. Proposed a model to monitor the health using Bayes network with android application. Which is useful to monitor the health if the number of patients are huge at hospitals. [14].

III. METHODOLOGY

Following advances are associated with actualizing the thought.

1. Collecting expansive database from the dirt and water system office and transferring in android application.
2. The soil example are gathered and tried for different segments
3. Arduino board aboard easy to advanced converter is employed to method easy reading hydrogen ion concentration metal anode. Arduino UNO R3, management necessity is 9v, which can be oxyacetylene utilizing 9-volt connection. The Ph. cathode and EEC detector are related to Arduino computerized GPIO pins. Each detector add scope of three.3v – 5v management offer. Easy Digital device is employed to vary over easy info caught from hydrogen ion concentration cathode to computerized esteem.
4. Ph. terminal wont to quantify the ph. esteem could be a sturdy metal terminal that takes an attempt at central of, current streaming between 2 semiconductor cathodes (channel and source) that is strained by the electric field created by the protonated third anode (entryway), that is place among channel and supply. Particle Selective Field result Transistors square {measure} utilized measure current stream.
5. Electrical conduction is calculable utilizing associate international organization device. The device contains of 2 metal terminals associated a gentle voltage is connected over the cathodes delivery concerning an electrical flow moving through the instance. Since this hunting through the dirt is appreciate the grouping of particles within the dirt.


The upper the particle focus, increasingly conductive the instance are and henceforward the upper the conduction perusal. The unit of estimation for Electrical conduction is little scale Siemens per metric linear unit ($\mu\text{S}/\text{cm}$) [6]. A thousand micro siemens is comparable to one minute men ($1\text{MS}/\text{cm}$). Arduino UNO R3 can method the knowledge detected by the device and convert it into shopper excusable perusal.

6. The Arduino and Sensors are associated (by means of. GSM/GPRS/Bluetooth) with portable soil Analyzer Application.
7. Comparing the qualities got with the database.
8. This handled information will figure the richness of the dirt.
9. The rancher can see advanced report created premise on test perusing on his cell phones and will likewise have the capacity to see the rundown of every single reasonable harvest for his territory.

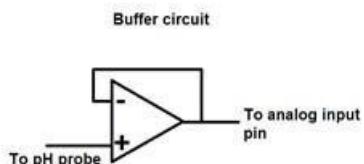


Fig2. Sensor working diagram

The proposed structure works as seeks after. Exactly when energized on, MCU acquaints the peripherals with be used to control and manage the identifying and correspondence squares of device. MCU steps through examinations from sensors individually and moreover checks if the device is related or not. If it can't avoid being, it trades data to convenient, for the most part takes another model. We have similarly realized rest mode in the device keeping in the mind the manner in which that the contraption must be used in outdoors applications. STM32L152RE has five power modes, out of which we have used the reinforcement mode. For possible later use mode controller's use is constrained as it draws a current of about 0.1mA. The controller goes into save mode for six hours after every one hour of data transmission. The recognizing unit contains distinctive agriculture sensors to evaluate pH regard, moistness, and temperature of soil test. These sensors are interfaced with a 10 piece ADC of MCU. DS18B20 is used as soil temperature sensor, which is a modernized sensor reliant on the Dallas' one wire show. It codes temperature data using 12 bits, and subsequently gives an unusual condition of accuracy. The earth soddenness sensor is arranged using the opposite association between soil obstacle and soil sogginess. Fig. 3 exhibits the schematic of moistness sensor used in this work.

Fig. 3. Soil Moisture Sensor Circuit

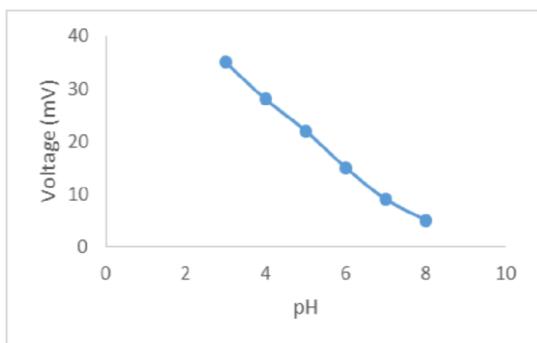


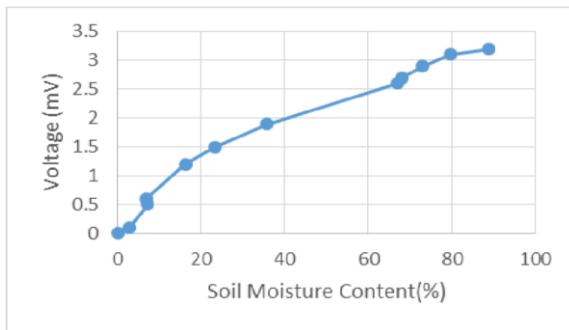
Fig. 4. Soil pH Buffer

The pH sensor, as shown in Fig. 4, consists of Associate in Nursing atomic number 51 conductor for pH and another conductor for soil wet. It's a strictly analog device and doesn't need any power offer to operate. However, an offer is required for biasing the buffer-amplifier circuit. The output leads from the pH probes area unit connected to the buffer input, and therefore the output of buffer circuit is distributed to associate in nursing analog pin of STM32 board. The framework is controlled utilizing two 1.5V AAA batteries. In the present model, these batteries can last as long as 30 days, after which they are energized and utilized once more. In future, we mean to deal with coordinating sun based power into the framework to make it independent regarding power utilization.

A. Sensor Calibration

The pH sensor was adjusted by examination with standard lab pH cushion arrangements. An aggregate of 16 pH cushion arrangements were made utilizing pH cradle tablets, two each in the scope of 3-10 with a stage of 1. The pH anode was dunked in every one of these arrangements and the comparing voltage was perused by the micro controller.

Fig. 5. pH Calibration Curve


Further, to make utilization essential, the voltage regards were quantized with the ultimate objective that a phase of 8 achieved a pH drop of 1 point. It was moreover probably found that pH regards underneath at least 3.8 were not specialist of the authentic pH of soil along these lines the models having pH regard more than 8 and underneath 3 were removed from the arrangement set..

The moistures sensor uses the standard of in reverse association between soil clamminess and soil block. More the earth restriction, lesser its moistness substance and the different way. The earth sogginess sensor was attempted with various instances of absolutely dry, center, and thoroughly wet soils. The thoroughly wet soils reestablished a voltage regard going from 2.62 to 3.21 Volt, however the absolutely dry soils offered climb to a furthest reaches of 0.4 Volt. Decently wet soils reestablished a voltage examining in about an immediate relationship with the degree of soil wetness. Using this example, the alteration condition was figured in Eqn. (1), where ADC_Value is fundamentally the basic voltage scrutinized by the ADC – Moisture Content = $(ADC_Value/3.3)*100$ (1) Soil temperature sensor, DS18B20, is a financially open, modernized, high precision, and water affirmation sensor. It uses 12 bits to encode soil temperature in this way, even the scarce soil temperature assortment can be distinguished unequivocally. For our application, there was no convincing motivation to furthermore adjust the soil temperature sensor. The made model was attempted in nursery pots and agrarian fields and agreeable results were obtained. Over various cycles of testing, various factors were considered and improvements were made as necessities be. Fig. 6 shows the working model of the made structure in a pot. Bluetooth correspondence was used for giving sensor data to a contiguous phone. Adaptable application BT Terminal was used at the wireless end for getting data from contraption. In the sensible showed up, a USB control supply is being used to control the microcontroller board. Regardless, in the midst of genuine field testing, a DC supply contained to two AAA cells was used. To make the device control capable, a reinforcement mode, which is inbuilt in STM32 firmware, was used.

Fig.6. Working Prototype

During various on-field tests, the pH sensor was found to exhibit a maximum error of 1, caused when the voltage deviation was equal to or greater than 4mV. However, this error was reduced to negligible limit by adding a buffer circuit. It is to be mentioned that there is further room for improvement in the pH sensor design process, such that the need for voltage quantization is removed and pH step size can be reduced to around 0.1. Field tests demonstrated the dampness sensor mistake to be to a great extent subject to the level of wetness. In the tolerably wet soil, the mistake is bound to happen. As the dirt dampness content builds, the blunder diminishes and will in general zero at 100% soil dampness content. Fig. 7 demonstrates the approval bend got for soil dampness estimation.

Figure-7

As can be seen from fig. 7, the voltage will in general digress from the straight bend in the locale of 10-40% dampness generally very. The mean blunder, arrived at the midpoint of more than 12 tests, was observed to be generally low (of the request of 9.4%). This is adequate to precisely demonstrate the water prerequisite of soil and can be taken an immaterial blunder esteem. The utilization of ultra accurate dampness sensors, in spite of the fact that builds the unwavering quality of information acquired, is counterproductive as it expands the expense of the framework unexpectedly. In this manner, there is directly an exchange off between the ideal precision and the expense of sensors utilized. In our work, the outcomes have been discovered tasteful while keeping up minimal effort of the framework thus a productive exchange off has been found.

IV. Conclusion

In this work, a strategy for deciding soil fruitfulness by considering Ph and electrical conductivity parameter is displayed. Ph is estimated utilizing Ph meter and electrical conductivity is estimated utilizing EC sensor. The perusing of Ph meter gives the inexact proportion of different supplement content present in soil and in what extent. This guess of soil supplement will decide the reasonable harvest for the land. The upside of this task is it skips lab-testing process and decides soil richness progressively. The proposed model for testing soil ripeness is modest and simple to utilize and keep up.

REFERENCE

1. Hari Mohan Meena, "Soil Testing Scenario in India and Its Significance in the Balanced Use of Fertilisers", International Journal of Plant & Soil Science 22 (3): 1-7.
2. H. Ramírez et, "Abscisic acid applications increases color in grapes and juice of 'Isabel'", Santa Catarina State University UDESC, Agro veterinary Science Center Brazil.
3. Jay Gholap, Anurag Ingole, Jayesh Gohil, Shailesh Gargade, Vahida Attar "Soil Data Analysis Using Classification Techniques and Soil Attribute Prediction", IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 ISSN (Online): 1694-0814.
4. Y Li et al 2017 IOP Conf. Ser.: Earth Environ. Sci. 67 012008: "Analysis of black soil environment based on Arduino".
5. Dr M Suchithra, Asuwini T, Charumathi M C, Ritu N Lal, "Sensor data validation", International Journal of Pure and Applied Mathematics, Volume 119 No. 12 2018, 14327-14335 ISSN: 1314-3395 (on-line version) URL: <http://www.ijpam.eu> Special Issue. N.Shahandl. Das, "Precision Irrigation Sensor Network Based Irrigation", a book on Problems, Perspectives and Challenges of Agricultural Water Management, IIT Bombay, India, pp. 217–232, April 2008.
6. Nirdosh Kumar, Mrs. Shimi S. L "Smart Farming System for Indian Farmers using Arduino based Technology" ISSN: 2454-132X Impact factor: 4.295 (Volume3, Issue1).

7. Ms. G. Rekha M.E, S. Muthu Selvi, "Android Arduino Interface with Smart Farming System", International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 6 Issue 3 March 2017, Page No. 20521-20526 Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i3.22.
8. Henry Oppong, Tuffour, "Mapping spatial variability of soil physical properties for site" Volume: 03 Issue: 02 Feb-2016.
9. K Hannah Jyothirmayi, "prediction of compaction characteristics of soil using plastic limit", IJRET: International Journal of Research in Engineering and Technology, eISSN: 2319-1163 | pISSN: 2321-7308.
10. Robert B. Cate Jr, "A Simple Statistical Procedure for Partitioning Soil Test Correlation Data Into Two Classes", in 2015.
11. Manoj H G, "Application of Soil Moisture Sensor in Mixed Farming", International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 02 Issue: 04 July-2015.
12. S. Rajaprakash, S. Muthuselvan, Pradeep P V, Balamurugan. A, Praveen M, Rishi kumar S "Building's Health Monitoring System using Internet of Things" International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-7, May, 2019.
13. S. Rajaprakash, S. Muthuselvan, K. Karthik, Vikrant Pradhan, Abhay kumar "Design of Disease Prediction System using Bayes Network with Android Application" International Journal of Recent Technology and Engineering (IJRTE), ISSN: 2277-3878, Volume-8, Issue-1, May 2019.

AUTHORS PROFILE

Dr. S. Rajaprakash his M.sc, M. Phil M.E Ph.D. currently working as Associate professor of CSE in Aarupadai Veedu Institute of Technology an ambit institution of Vinayaka Missions Research Foundation (Deemed to be University), Tamil Nadu, India. He has 17 years of experience in academics, research, and development activities. Published 17 research papers in referred Journals and Conferences. His area of Interest Artificial Intelligence, Computational Intelligence, Discrete Mathematics and Automata theory. Received grants from Tamil Nadu State Council for Science and Technology. He has peer Reviewed Manuscripts in reputed international Journals and Conferences. He is a member in following professional societies: CSI and ISTE and Ramajunam Mathematical Society.

Mr. S. Muthuselvan M.E., (Ph.D.) currently working as Assistant Professor Gr. II, Aarupadai Veedu Institute of Technology an ambit institution of Vinayaka Mission's Research Foundation (Deemed to be University), Tamil Nadu, and India. Published more than 15 national and international journal and organizing committee for four international conference, two national conference and 11 years of teaching experience with 6 years of research experience. He is a member in following professional societies: CSI and MISTE.

Mr. K. Karthik ME (PH.D) currently working as Assistant professor Aarupadai Veedu Institute of Technology an ambit institution of Vinayaka Missions Research Foundation (Deemed to be University), Tamil Nadu, India published more than 7 national and international journal and conference and organizing committee for 4 international conference, two national conference and 15 years of teaching experience with 4 years of research experience. He is a member in following professional societies: CSI and ISTE.

Niranjan kumar, Final year CSE in Aarupadai Veedu Institute of Technology an ambit institution of Vinayaka Missions Research Foundation (Deemed to be University), Tamil Nadu, India. He is actively participated the events conducted in various colleges.

Hemant Karmarkar, Final year CSE in Aarupadai Veedu Institute of Technology an ambit institution of Vinayaka Missions Research Foundation (Deemed to be University), Tamil Nadu, India. He is actively participated the events conducted in various colleges.

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication