Coupled Fixed Point Theorems in Vector b-metric Space

Mamta Kamra, Rahul Hooda, Archana Malik

Abstract: This paper consists of some coupled and common coupled fixed point theorems in vector b-metric spaces. Vector b-metric space or E-b-metric space was introduced by Petre [6] merging the concepts of vector metric space as introduced by Cevik [4] and b-metric space as introduced by Czerwik [5]. We generalize the results of Shatnanawi and Hani [8] and Rao et al. [7].

Keywords: Coupled Fixed, b-metric Space.

I. INTRODUCTION

The notion of coupled fixed point for metric spaces was initiated by Bhaskar and Lakshmikantan [12]. Thereafter several authors investigated coupled fixed point theorems for various general metric spaces [12-14]. In 1989, Bakhtin [3] introduced the concept of b-metric space. Chao et al. [13] and Lakshikanthan [14] have probed coupled fixed point theorems on b-metric space. Cevik and Altun [4] introduced the concept of vector metric space and proved some fixed point theorems on this space. Petre [6] defined the vector b-metric space or E-b-metric space. We prove some results related to coupled fixed points on E-b-metric space.

II. PRELIMINARIES

We present here various definitions and results that will be used in the sequel. For definitions and results related to Riesz space, we refer Aliprantis and Border [2] and for vector metric spaces, one can see Cevik and Altun [4].

Definition 2.1 A set Z with binary relation (≦) which is reflexive, antisymmetric and transitive is called partial ordered set.(poset).

A poset (Z, ≦) is said to be linearly ordered or totally ordered or chain if for each pair u, v ∈ Z, we have either u ≦ v or v ≦ u.

Definition 2.2 A poset in which every subset has a supremum or an infimum is called lattice. A lattice in Z is said to be complete if every non empty subset of a lattice which is bounded below (above) has a infimum (supremum).

Definition 2.3 A partially ordered vector space is poset (E, ≦) where E is a real vector space such that for all u, v, w ∈ E and λ > 0

(i) u ≦ v ⇒ u + w ≦ v + w
(ii) u ≦ v ⇒ λu ≦ λv

Definition 2.4 A partially ordered vector space which is also a lattice under its ordering is called a Riesz space.

Notation In a Riesz space, for a decreasing sequence {u_n} whose inf u_0 = u. We use the notation u_n ↓ u.

Definition 2.5 An Archimedean Riesz space E is a Riesz space in which 1/n u ↓ 0 for every u ∈ E_+, where E_+ = {u ∈ E: u ≥ 0}.

Definition 2.6 In a Riesz space E, A sequence {u_n} is order convergent to u written as u_n → u, if there exists a sequence {a_n} in E satisfying a_n ↓ 0 and |u_n - u| ≤ a_n for all n, where |u| = u ∨ -u.

The sequence {u_n} in a Riesz space E is order-Cauchy if there exists a sequence {a_n} in E satisfying a_n ↓ 0 and |u_n - u_{n+m}| ≤ a_n for all n and forall m.

Lemma 2.7 [15] In a Riesz space E, if u ≦ ku, where u ∈ E_+, k ∈ [0, 1) and E_+ = {u ∈ E: u ≥ 0}, then u = 0.

Example 2.8 [2] is a Riesz space with coordinate wise ordering defined by (u_1, u_2) ≦ (v_1, v_2) iff u_1 ≦ v_1, u_2 ≦ v_2 for all (u_1, u_2), (v_1, v_2) ∈ [2].

Definition 2.9 A function d : Z × Z → E_+, where Z is nonempty set and E is Riesz space is called a E-metric(vector metric) on Z if it satisfies the following properties:

(i) d(z_1, z_2) = 0 iff z_1 = z_2
(ii) d(z_1, z_2) ≤ d(z_1, z_3) + d(z_3, z_2) ∀ z_1, z_2, z_3 ∈ Z

Then triplet (Z, d, E) is said to be vector metric space.

For any z_1, z_2, z_3, z_4 in a vector metric space, some inequalities listed below are trivial

(a) 0 ≤ d(z_1, z_2)
Coupled Fixed Point Theorems in Vector b-metric Space

(b) \(d \left(z_1, z_2 \right) = d \left(z_2, z_1 \right) \)

(c) \(d \left(z_1, z_2 \right) - d \left(z_2, z_3 \right) \leq d \left(z_1, z_2 \right) \)

(d) \(d \left(z_1, z_2 \right) - d \left(z_2, z_4 \right) \leq d \left(z_1, z_2 \right) + d \left(z_2, z_4 \right) \).

Example 2.10 Every Riesz space \(E \) is a vector metric space with \(d \left(z_1, z_2 \right) = \left| z_1 - z_2 \right| \) for all \(z_1, z_2 \in E \).

Example 2.11 Let \(d : \square \times \square \rightarrow \square^2 \) be defined as \(d \left(x, y \right) = \left(\alpha_1 |x - y|, \alpha_2 |x - y| \right) \), where \(\alpha_1, \alpha_2 \geq 0 \) and \(\alpha_1 + \alpha_2 > 0 \). Then \(d \) is a vector metric with coordinatewise or lexicographical ordering and \(\left(\square, d, \square^2 \right) \) is a vector metric space.

Example 2.12 \(\square^n \) is a Riesz space corresponding to partial order defined by \(\left(u_1, u_2, \ldots, u_n \right) = \left(v_1, v_2, \ldots, v_n \right) \) if and only if \(u_1 \leq v_1, u_2 \leq v_2, \ldots, u_n \leq v_n \).

Define \(d : \square^n \times \square^n \rightarrow \square^2 \) by \(d \left(u_1, u_2, \ldots, u_n; v_1, v_2, \ldots, v_n \right) = d \left(u_1, v_1, \ldots, u_n, v_n \right) \), where \(\alpha_i, i \leq 1, n \) are non-negative real numbers with \(\alpha_1 + \alpha_2 + \ldots + \alpha_n > 0 \). Then \(\left(\square^n, d, \square^2 \right) \) is a vector metric space.

Definition 2.13 Suppose \(\left(Z, d, E \right) \) is a vector metric space. A sequence \(\left(z_n \right) \) in \(Z \) is said to be \(E \)-convergent(or vectorial converges) to some \(z \in Z \), written as \(z_n \rightarrow z \), if there exists a sequence \(\left(a_n \right) \) in \(E \) such that \(a_n \downarrow 0 \) and \(d \left(z_n, z \right) \leq a_n \) for all \(n \).

Definition 2.14 A sequence \(\left(z_n \right) \) in a vector metric space \(\left(Z, d, E \right) \) is said to be \(E \)-Cauchy if there exists a sequence \(\left(a_n \right) \) in \(E \) such that \(a_n \downarrow 0 \) and \(d \left(z_n, z_{n+m} \right) \leq a_n \forall n \) and \(m \).

Definition 2.15 Let \(Y \) be any subset of a vector metric space \(\left(Z, d, E \right) \). \(Z \) is said to be \(E \)-closed if for every sequence \(\left(z_n \right) \subseteq Y \) and \(z_n \rightarrow z \), implies \(z \in Y \).

It is easy to see that if \(z_n \rightarrow z \), then the limit of the sequence \(z_n \) is unique and every subsequence of \(\left(z_n \right) \) \(E \)-converges to \(z \). If \(y_n \rightarrow y \), then \(d \left(z_n, y_n \right) \rightarrow d \left(z, y \right) \).

The concepts of convergence in metric similar to vectorial convergence when \(E = \square \). Also, if \(d \) is the absolute valued metric and \(Z = E \) then concepts of convergence in order and vectorial convergence coincide.

Definition 2.16 An \(E \)-complete vector metric space \(Z \) is a vector metric space in which every \(E \)-Cauchy sequence in \(Z \) \(E \)-converges to a limit in \(Z \).

Definition 2.17 [16] A mapping \(f : \left(Z, d, E \right) \rightarrow \left(Y, d', F \right) \) is vectorially continuous at \(z \) if \(z_n \rightarrow z \) in \(Z \) implies \(f \left(z_n \right) \rightarrow f \left(z \right) \) in \(Y \) and the function \(f \) is vectorially continuous on \(Z \) if it is vectorially continuous at each element of \(Z \).

Definition 2.18 [6] A function \(d : Z \times Z \rightarrow E \), where \(E \) is Riesz space and \(Z \) is nonempty set, is said to be \(E \)-b-metric if, for any \(z_1, z_2, z_3 \in Z \) and \(s \geq 1 \) any real number, the following conditions are satisfied:

(i) \(d \left(z_1, z_2 \right) \leq s \left[d \left(z_1, z_3 \right) + d \left(z_2, z_3 \right) \right] \)

(ii) \(d \left(z_1, z_2 \right) = 0 \) if and only if \(z_1 = z_2 \).

The triple \(\left(Z, d, E \right) \) is said to be \(E \)-b-metric space.

Example 2.19 Let \(Z = \mathcal{L}^p \left[0,1 \right] \) with \(0 < p < 1 \) and \(E = \square^2 \). Let \(d : \mathcal{L}^p \left[0,1 \right] \times \mathcal{L}^p \left[0,1 \right] \rightarrow \square^2 \) be defined by \(d \left(f_1, f_2 \right) = \left(\alpha \| f_1 - f_2 \|_p, \beta \| f_1 - f_2 \|_p \right) \) where \(\alpha, \beta \geq 0 \) and \(\alpha + \beta > 0 \). Then we can deduce that \(d \left(f_1, f_2 \right) \leq 2^\frac{1}{p} \left[d \left(f_1, f_2 \right) + d \left(f_2, f_1 \right) \right] \).

Hence \(\left(Z, d, \square^2 \right) \) is \(E \)-b-metric space with parameter \(s = 2^\frac{1}{p} > 1 \).

Example 2.20 Suppose \(0 < p < 1 \), \(Z = \mathcal{L}^p \), and \(d : \mathcal{L}^p \times \mathcal{L}^p \rightarrow \square^2 \) is defined as \(d \left(u, v \right) = \left(\alpha \| u - v \|_p, \beta \| u - v \|_p \right) \), where \(\alpha, \beta \geq 0 \) and \(\alpha + \beta > 0 \), then \(\left(Z, d, \square^2 \right) \) is \(E \)-b-metric space with parameter \(s = 2^\frac{1}{p} > 1 \).

Definition 2.21 Let \(Z = C \left[-1,1 \right] = E \) and \(d : Z \times Z \rightarrow E \) be defined as \(d \left(f_1, f_2 \right) = d \left(f_1 - f_2 \right)^p, p > 1 \). Then \(\left(Z, d, E \right) \) is \(E \)-b-metric space with parameter \(s = 2^\frac{1}{p} > 1 \). Since the function \(x^p \left(p > 1 \right) \) is convex, we have \(\left(1 \frac{1}{2} x + \frac{1}{2} y \right)^p \leq \frac{1}{2} x^p + \frac{1}{2} y^p \) so that \(\left(x + y \right)^p \leq 2^p \left(x^p + y^p \right) \).

Therefore

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: C10821183S319/2019©BEIESP
DOI: 10.35940/ijrte.C1082.1183S319

469
\[d(f_1, f_2) = (f_1 - f_2)^+ = (f_1 - f_2 + f_2 - f_1)^+ \]
\[\leq 2^{\alpha}(f_1 - f_2)^+ + (f_2 - f_1)^+ \]
\[= 2^{\alpha}[d(f_1, f_2) + d(f_2, f_1)] \]

Thus the relaxed triangular inequality holds with \(s = 2^{\alpha} > 1 \)

Example 2.22 Let \(Z = \mathbb{R}^2 \), \(E = \mathbb{R}^2 \) and \(d : Z \times Z \to \mathbb{R}^2 \) be defined as
\[d((u_1, v_1), (u_2, v_2)) = (|u_1 - u_2|^\alpha, |v_1 - v_2|^\beta) \]
where \(\alpha, \beta \geq 0 \) and \(\alpha + \beta > 0 \), then \((Z, d, \mathbb{R}^2)\) is E-b-metric space with parameter \(s = 2 > 1 \).

Example 2.23 Let \(Z = \{0,1,2\} \), \(E = \mathbb{R}^2 \) and \(d : Z \times Z \to \mathbb{R}^2 \) be defined as
\[d((0,1)) = (1,0) \]
\[d((1,2)) = (2,1) \]
\[d((0,2)) = (2,0) \]
Since \(d((0,2)) = (4,4) \geq d((1,2)) \), \((Z, d, E)\) is E-b-metric space with \(s = 2 \) but not a metric space.

Definition 2.24 Suppose \((Z, \leq)\) is a poset and \(T : Z \times Z \to Z \) be a map. If \(T(u, v) \) is monotone nondecreasing in first argument i.e. \(u \) and is monotone nonincreasing in second argument i.e. \(v \), that is, for all \(p, q \in Z \), \(p \leq q \) implies \(T(p, v) \leq T(q, v) \) for any \(v \in Z \) and for all \(x, y \in Z \), \(y \leq x \) implies \(T(u, x) \leq T(u, y) \) for any \(u \in Z \), then one can say that \(T \) has mixed monotone property.

Definition 2.25 Suppose \((Z, \leq)\) is a poset and \(T : Z \times Z \to Z \) and \(g : Z \to Z \) be two mappings. \(T \) has the mixed \(g \)-monotone property if for any \(p, q \in Z \), \(gp \leq gq \) implies \(T(p, y) \leq T(q, y) \) for any \(y \in Z \) and for any \(u, v \in Z \), \(gu \leq gv \) implies \(T(z, v) \leq T(z, u) \) for any \(z \in Z \).

Definition 2.26 Suppose \((Z, d, E)\) be E-b-metric space.
An element \((z_1, z_2) \in Z \times Z\) is said to be coupled fixed point of a function \(T : Z \times Z \to Z \) if \(T(z_1, z_2) = z_1 \) and \(T(z_2, z_1) = z_2 \).

Definition 2.27 An element \((z_1, z_2) \in Z \times Z\) is said to be coupled coincidence point of the mapping \(T : Z \times Z \to Z \) and \(g : Z \to Z \) if \(T(z_1, z_2) = g(z_1) = z_1 \) and \(T(z_2, z_1) = g(z_2) = z_2 \).

Definition 2.28 Suppose \(Z \) is a non empty set. The mapping \(T : Z \times Z \to Z \) and \(g : Z \to Z \) are said to be commutative if \(g(T(z_1, z_2)) = T(g(z_1), g(z_2)) \forall x, y \in Z \).

Definition 2.29 Suppose \(Z \neq \emptyset \) and \(T : Z \times Z \to Z \) and \(g : Z \to Z \). The pair \((T, g)\) is said to be weakly compatible if \(g(T(z_1, z_2)) = T(g(z_1), g(z_2)) \) whenever \(g(z_1) = T(z_1, z_2) \) and \(g(z_2) = T(z_2, z_1) \forall z_1, z_2 \in Z \times Z \).

III. MAIN RESULTS

Theorem 3.1 Suppose \((Z, \leq)_Z\) is a poset and \(d : Z \times Z \to E_+\) be E-b-metric defined on \(Z \) with coefficient \(s \geq 1 \) and E-Archimedean. Let \(T : Z \times Z \to Z \) and \(g : Z \to Z \) be two mappings such that
\[d(T(u, v), T(p, q)) + d(T(v, u), T(q, p)) \leq kd(g(u, gp) + d(gv, gq)) \]
for some \(k \in \left(0, \frac{1}{s}\right)\) and for all \(u, v, p, q \in Z \) with \(gp \leq g u \) and \(gv \leq gq \). We further assume the following hypothesis
1. \(T(Z \times Z) \subseteq g(Z) \)
2. \(g(Z) \) is E-complete.
3. \(g \) is vectorially continuous and commute with \(T \).
4. \(T \) has the mixed \(g \)-monotone property on \(Z \).
5. Either \(T \) is vectorially continuous or
 A. for every non decreasing sequence, if \(\{u_n\} \to u \) then \(u_n \leq_Z u \).
 B. for every increasing sequence if \(\{v_n\} \to v \) then \(v \leq_Z v_n \).

Then if there exists two elements \(u_0, v_0 \in Z \) with \(g(u_0) \leq g(u_0, v_0) \) and \(T(u_0, v_0) \leq g(v_0) \). \(T \) and \(g \) have coupled coincident fixed point.

Proof: Let \(u_0, v_0 \in Z \) be such that \(gu_0 \leq Z T(u_0, v_0) \) and \(T(v_0, u_0) \leq g v_0 \).
Since \(T(Z \times Z) \subseteq g(Z) \), it is to find \(u_1, v_1 \in Z \) such that
Coupled Fixed Point Theorems in Vector b-metric Space

\[g(u_i) = T(u_{n_i}, v_0) \]
and \[g(v_i) = T(v_{n_i}, u_0). \]

Again since \(T(Z \times Z) \subseteq g(Z) \), we can select \(u_1, v_1 \in Z \) such that
\[g(u_1) = T(u_{n_1}, v_1) \]
and
\[g(v_1) = T(v_{n_1}, u_1). \]

Continuing this process, we can construct two sequences \(\{u_n\} \) and \(\{v_n\} \) in \(Z \) such that,
\[g(u_{n+1}) = T(u_n, v_n) \]
and
\[g(v_{n+1}) = T(v_n, u_n), \quad \forall n \]

Now we will prove that \(\forall n \geq 0, \)
\[g(u_n) \leq Z g(u_{n+1}) \]
\[g(v_n) \leq Z g(v_{n+1}) \]

We will prove (3) and (4) by the use of principle mathematical induction.

Suppose \(n = 0 \).

Since \(g(u_0) \leq Z T(u_0, v_0) \) and \(T(v_0, u_0) \leq Z g(v_0) \).

Thus we have \(g(u_0) \leq Z g(u_1) \) and \(g(v_1) \leq Z g(v_0) \).

So (3) and (4) hold for \(n = 0 \).

Now we suppose that (3) and (4) hold for some \(n > 0 \).

Again
\[d(gu_n, gu_{n+1}) + d(gv_n, gv_{n+1}) = d(T(u_{n-1}, v_{n-1}), T(u_n, v_n)) + d(T(v_{n-1}, u_{n-1}), T(v_n, u_n)) \]
\[\leq E k[d(gu_{n-1}, gu_n) + d(gv_{n-1}, gv_n)] \]

Let \(d(gu_n, gu_{n+1}) + d(gv_n, gv_{n+1}) = d_n \)
where \(d_n \) is some element of \(E \).

Then \(d_n \leq E kd_{n-1} \]
\[\Rightarrow d_n \leq E kd_{n-1} \leq E k^2 d_{n-2} \leq E \ldots \leq E k^n d_0 \]

Again let \(m, n \) be two positive integers, such that \(m > n \). Then we can write
\[d(gu_n, gu_m) \leq E s d(gu_n, gu_{n+1}) + s^2 d(gu_{n+1}, gu_{n+2}) + s^3 d(gu_{n+2}, gu_{n+3}) + \ldots \]
\[\ldots + s^m d(gu_{n-m}, gu_{n-m+1}) + s^{m-1} d(gu_{m-1}, gu_m). \]

(By repeated use of triangular inequality)
\[d(gv_n, gv_m) \leq E s d(gv_n, gv_{n+1}) + s^2 d(gv_{n+1}, gv_{n+2}) + s^3 d(gv_{n+2}, gv_{n+3}) + \ldots \]
\[\ldots + s^{m-1} d(gv_{m-1}, gv_{m-2}) + s^{m-2} d(gv_{m-2}, gv_{m-3}) + \ldots + s^2 d(gu_n, gu_m) \]

Therefore,
\[d(gu_n, gu_m) + d(gv_n, gv_m) \leq E s d_n + s^2 d_{n+1} + s^3 d_{n+2} + \ldots + s^{m-n} d_{m-2} + s^{m-n} d_{m-1} \]

[using (7)]
\[
\begin{align*}
 &\leq_E s k^n d_0 + s^3 k^{n+1} d_0 + s^3 k^{n+2} d_0 + \ldots + s^{m-n-1} k^{m-n-2} d_0 + s^{m-n-1} k^{m-n-1} d_0 \\
 &\leq_E s k^n d_0 + s^3 k^{n+1} d_0 + s^3 k^{n+2} d_0 + \ldots + s^{m-n-1} k^{m-n-2} d_0 + s^{m-n} k^{m-n-1} d_0 \\
 &\leq_E s k^n d_0 \left[1 + sk + s^2 k^2 + \ldots + s^{m-n-1} k^{m-n-1} \right] \\
 &\leq_E s k^n d_0 \left[1 + sk + s^2 k^2 + \ldots \right].
\end{align*}
\]

Thus, \(d \left(gu_n, gu_m \right) + tv \left(gv_n, gv_m \right) \leq 0\) \(\Rightarrow d \left(gu_n, gu_m \right) \leq 0, d \left(gv_n, gv_m \right) \leq 0\)

Hence \(\{ gu_n \}\) and \(\{ gv_n \}\) are two E-Cauchy sequence in \(gZ\) and we supposed the hypothesis that \(gZ\) is E-complete.

So there exists two points, say \(u\) and \(v\) in \(Z\), such that the two E-Cauchy sequences \(gu_n \rightarrow gu = \xi\) and \(gv_n \rightarrow gv = \eta\) as \(n \rightarrow \infty\).

Now let \((5)\) holds, \(T\) is vectorially continuous and so

\[g \left(g \left(u_{n+1} \right) \right) = g \left(T \left(u_n, v_n \right) \right) = T \left(gu_n, gv_n \right)\]

and \(g\) and \(T\) are vectorially continuous.

Similarly, we can show that \(g \left(\eta \right) = T \left(\eta, \xi \right)\).

Hence \((\xi, \eta)\) is a point of coincidence for \(T\) and \(g\).

\[
\begin{align*}
 d \left(g \xi, T \left(\xi, \eta \right) \right) + s d \left(T \left(gv_n, gu_n \right), T \left(\eta, \xi \right) \right) &\leq_E s d \left(g \xi, gu_{n+1} \right)
 + s d \left(T \left(gu_n, gv_n \right), T \left(\xi, \eta \right) \right) + s d \left(T \left(gv_n, gu_n \right), T \left(\eta, \xi \right) \right)
 - s d \left(g \xi, gv_{n+1} \right) + s k \left[d \left(ggu_n, g \xi \right) + d \left(ggv_n, g \eta \right) \right]
\end{align*}
\]

(8)

Since \(g\) is vectorially E-continuous, \(ggu_n \rightarrow g \xi\) and \(ggv_n \rightarrow g \eta\) as \(n \rightarrow \infty\) and hence (8) gives \(g \xi = T \left(\xi, \eta \right)\).

Similarly, we can show that \(g \eta = T \left(\eta, \xi \right)\).

Again, \(d \left(g \xi, g \eta \right) + d \left(g \eta, g \xi \right) = d \left(T \left(\xi, \eta \right), T \left(\eta, \xi \right) \right) + d \left(T \left(\eta, \xi \right), T \left(\xi, \eta \right) \right)\)

\[
\begin{align*}
 &\leq_E k \left[d \left(g \xi, g \eta \right) + d \left(g \eta, g \xi \right) \right] \\
 &\Rightarrow 2d \left(g \xi, g \eta \right) \leq_E 2k d \left(g \xi, g \eta \right) \\
 &\Rightarrow d \left(g \xi, g \eta \right) \leq_E k d \left(g \xi, g \eta \right)
\end{align*}
\]

Since \(k < 1\), \(d \left(g \xi, g \eta \right) = 0\), thus \(g \xi = g \eta\).

Hence \(T \left(\xi, \eta \right) = g \xi = g \eta = T \left(\eta, \xi \right)\).

Finally, Again, let \((5A)\) hold, by \((5)\) we get that \(\{ gu_n \}\) is a non-decreasing sequence and \(gu_n \rightarrow \zeta\), therefore \(gu_n \leq_Z \xi\), for all \(n\). Similarly by \((5B)\) and \((6)\), we get that \(\{ gv_n \}\) is a non-increasing sequence and \(gv_n \rightarrow \eta\), therefore \(\eta \leq_Z gv_n\), for all \(n\).

Then \(d \left(g \xi, T \left(\xi, \eta \right) \right) \leq_E s d \left(g \xi, gu_{n+1} \right) + s d \left(ggu_{n+1}, T \left(\zeta, \eta \right) \right)\)

\[
= s d \left(g \xi, gu_{n+1} \right) + s d \left(g \left(T \left(u_n, v_n \right) \right), T \left(\zeta, \eta \right) \right)
\]

\[
= s d \left(g \xi, gu_{n+1} \right) + s d \left(T \left(gu_n, gv_n \right), T \left(\zeta, \eta \right) \right)
\]

Add both side \(s d \left(T \left(gv_n, gu_n \right), T \left(\eta, \xi \right) \right)\), thus we have

\[
\begin{align*}
 d \left(g \xi, T \left(\xi, \eta \right) \right) + s d \left(T \left(gv_n, gu_n \right), T \left(\eta, \xi \right) \right) &\leq_E s d \left(g \xi, gu_{n+1} \right) + s d \left(T \left(gv_n, gu_n \right), T \left(\eta, \xi \right) \right)
 + s d \left(T \left(gu_n, gv_n \right), T \left(\xi, \eta \right) \right)
 - s d \left(g \xi, gv_{n+1} \right) + s k \left[d \left(ggu_n, g \xi \right) + d \left(ggv_n, g \eta \right) \right]
\end{align*}
\]
Thus \((1-ks^2)[d(\xi, g\xi) + d(\eta, g\eta)] \)
\[\leq s \left[d(\xi, g\eta_{n+1}) + d(\eta, g\eta_{n+1}) \right] + s^2 k \left[d(g\eta_{n+1}, \xi) + d(g\eta_{n+1}, \eta) \right] \rightarrow 0 \] as \(n \rightarrow \infty \)
Thus \(d(\xi, g\xi) = 0 = d(\eta, g\eta) \)
\[\Rightarrow \xi = g\xi \text{ and } \eta = g\eta \]
\[\Rightarrow g(\xi) = \xi = T(\eta, \eta), g(\eta) = \eta = T(\eta, \xi). \]

Theorem 3.2 Suppose \((Z, d, E)\) is an E-b-metric space with \(s > 1\), E-Archimedean and \(T : Z \times Z \rightarrow Z \) and \(g : Z \rightarrow Z \) be two mappings on \(Z \). Suppose that there exists non-negative constant \(t_i, i = 1, 2, \ldots, 10 \) such that

\[
d(T(v, v), T(v_{n+1}, v_{n+1})) \leq t_1 d(gv, gv_{n+1}) + t_2 d(gv_{n+1}, gv) \\
+ t_3 d(T(v, v), gv) + t_4 d(T(v, v), gv_{n+1}) + t_5 d(T(v_{n+1}, v_{n+1}), gv_{n+1}) \\
+ t_6 d(T(v_{n+1}, v_{n+1}), gv_{n+1}) + t_7 d(T(v, v), gv_{n+1}) + t_8 d(T(v, v), gv_{n+1}) \\
+ t_9 d(T(v_{n+1}, v_{n+1}), gv_{n+1}) + t_{10} d(T(v_{n+1}, v_{n+1}), gv_{n+1})
\]
holds for all \(u, v, p, q \in Z \).

Suppose

\[
d(gv_{n+1}, gv_{n+2}) = d(T(v, v), T(v_{n+1}, v_{n+1})) \leq d(T(v_{n+1}, v_{n+1}), T(v_{n+1}, v_{n+1})) \leq t_1 d(gv, gv_{n+1}) + t_2 d(gv_{n+1}, gv) \\
+ t_3 d(T(v, v), gv_{n+1}) + t_4 d(T(v, v), gv_{n+1}) + t_5 d(T(v_{n+1}, v_{n+1}), gv_{n+1}) \\
+ t_6 d(T(v_{n+1}, v_{n+1}), gv_{n+1}) + t_7 d(T(v, v), gv_{n+1}) + t_8 d(T(v, v), gv_{n+1}) \\
+ t_9 d(T(v_{n+1}, v_{n+1}), gv_{n+1}) + t_{10} d(T(v_{n+1}, v_{n+1}), gv_{n+1})
\]
by using (9), we have

\[
\Rightarrow d(gv_{n+1}, gv_{n+2}) \leq E \text{ such that } d(gv_{n+1}, gv_{n+2}) \leq E t_1 d(gv, gv_{n+1}) + t_2 d(gv_{n+1}, gv) \\
+ t_3 d(gv_{n+2}, gv_{n+1}) + t_4 d(gv_{n+2}, gv_{n+1}) + t_5 d(gv_{n+1}, gv_{n+1}) \\
+ t_6 d(gv_{n+1}, gv_{n+1}) + t_7 d(gv_{n+2}, gv_{n+1}) + t_8 d(gv_{n+2}, gv_{n+1}) \\
(1-t_5-t_6) d(gv_{n+1}, gv_{n+2}) \leq E (t_1 + t_2 + t_3 + t_4) d(gv_{n+1}, gv_{n+1}) + t_9 + t_{10} d(gv_{n+2}, gv_{n+1})
\]
Since \(d(gv_{n+1}, gv_{n+2}) \leq E \text{ such that } d(gv_{n+1}, gv_{n+2}) \leq E t_1 d(gv, gv_{n+1}) + s t_2 d(gv_{n+1}, gv_{n+1}) \\
(1-t_5-t_6) d(gv_{n+1}, gv_{n+2}) \leq E (t_1 + t_2 + t_3 + t_4) d(gv_{n+1}, gv_{n+1}) \\
+ s(t_9 + t_{10}) \left[d(gv_{n+1}, gv_{n+1}) + d(gv_{n+1}, gv_{n+2}) \right] \\
\Rightarrow (1-t_5-t_6) d(gv_{n+1}, gv_{n+2}) \leq E (t_1 + t_2 + t_3 + t_4 + s(t_9 + t_{10})) d(gv_{n+1}, gv_{n+1})
\]

\[
d(gv_{n+1}, gv_{n+2}) \leq E (t_1 + t_2 + t_3 + t_4 + s(t_9 + t_{10})) d(gv_{n+1}, gv_{n+1}) \\
\Rightarrow d(gv_{n+1}, gv_{n+2}) \leq E (t_1 + t_2 + t_3 + t_4 + s(t_9 + t_{10})) d(gv_{n+1}, gv_{n+1})
\]

\[
\Rightarrow d(gv_{n+1}, gv_{n+2}) \leq E r d(gv_{n+1}, gv_{n+1})
\]
where \(r = \frac{t_1 + t_2 + t_3 + t_4 + s(t_9 + t_{10})}{1-t_5-t_6-s(t_9 + t_{10})} \)
\[
sr = \frac{s(t_1 + t_2 + t_3 + t_4) + s(t_9 + t_{10})}{1-t_5-t_6-s(t_9 + t_{10})}
\]
Since \(s(t_1 + t_2 + t_3 + t_4) + t_5 + t_6 + (s^2 + s)(t_9 + t_{10}) < 1 \)

(i) \(g(Z) \) is E-complete subspace of \(Z \).

(ii) \(T(Z \times Z) \subseteq g(Z) \)

(iii) \(s(t_1 + t_2 + t_3 + t_4) + t_5 + t_6 + t_7 + t_8 + (s^2 + s)(t_9 + t_{10}) < 1 \)

Then \(T \) and \(g \) have a coupled coincidence point. Further, if \(T \) and \(g \) are weakly compatible then \(T \) and \(g \) have unique coupled fixed point.

Proof: - Take \(v_0 \in Z \).

Since \(T(Z \times Z) \subseteq g(Z) \), then can find \(v_j \in Z \) such that \(T(v_0, v_0) = g(v_1) \).

Again since \(T(Z \times Z) \subseteq g(Z) \), then \(\exists v_2 \in Z \) such that \(T(v_1, v_1) = g(v_2) \).

Repeating the above process, we will get a sequence \(\{u_n\} \) in \(g(Z) \) such that

\[
u_n = g(v_{n+1}) = T(v_n, v_n)
\]
(9)
By using the condition (i),
\[s(t_1 + t_2 + t_3 + t_4) + t_5 + t_6 + t_7 + t_8 + (s^2 + s)(t_9 + t_{10}) < 1 \]
and \(r \leq sr \), we get \(r < 1 \),
\[\Rightarrow d(g_{v_{n+1}}, g_{v_{n+2}}) \leq E r d(g_v, g_{v_{n+1}}) \] (10)
Repeating \(n \)-times,
\[d(g_{v_{n+1}}, g_{v_{n+2}}) \leq E r^{n+1} d(g_v, g_1) \] (11)
Let \(n, m \in N, m > n \).

Therefore
\[d(g_v, g_m) \leq E s d(g_v, g_{n+1}) + s^2 d(g_{v_{n+1}}, g_{v_{n+2}}) + \ldots + s^{m-n} d(g_{v_{m-1}}, g_m) \]
\[\Rightarrow d(g_v, g_m) \leq E s r^n d(g_v, g_1) + s^2 r^{n+1} d(g_v, g_1) + \ldots + s^{m-n} r^{m-1} d \]
\[= s r^n d(g_v, g_1)[1 + sr + sr^2 + \ldots + s^{m-n-1} r^{m-n-1}] \]
\[\leq E s r^n d(g_v, g_1)[1 \frac{1}{1-sr}] \]

Since
\[r < 1 \quad \Rightarrow r^n \to 0 \text{ as } n \to \infty, \]
\[sr < 1 \quad \Rightarrow (1-sr) > 0 \]
\[\Rightarrow \{g_v\} \text{ is an E-Cauchy sequence in } (g(Z), d). \]
Since \(g(Z) \) is complete, \(\exists t \in g(Z) \) such that
\[\lim_{n \to \infty} g(v_n) = g(v) = t \]
We will now prove that \((y, y)\) is the coupled coincident point of \(T \) and \(g \).
\[d(g_{v_{n+1}}, T(v, v)) = d(T(v_n, v_n), T(v, v)) \]
\[\leq E t_1 d(g_{v_{n+1}}, g_v) + t_2 d(g_v, g_{v_{n+1}}) + t_3 d(T(v_n, v_n), g) + t_4 d(T(v_n, v_n), g_v) \]
\[+ t_5 d(T(v, v), g_v) + t_6 d(T(v, v), g) + t_7 d(T(v, v), g_v) + t_8 d(g_v, g_v) \]
\[= d(g, g)(T(v, v), g_v) + t_9 d(T(v, v), g_v) + t_{10} d(T(v, v), g_v) \] (12)
Since
\[d(g, T(v, v)) \leq E s \left[d(g, g_{v_{n+1}}) + d(g_{v_{n+1}}, T(v, v)) \right] \]
\[\Rightarrow \frac{1}{s} d(g, T(v, v)) \leq E \lim_{n \to \infty} d(g_{v_{n+1}}, T(v, v)) \] (13)
Also,
\[d(g_{v_{n+1}}, g_v) \leq E s \left[d(g_{v_{n+1}}, g_v) + d(g_v, g_v) \right] \]
Thus
\[\lim d(g_{v_{n+1}}, g_v) = 0 \] (14)
Further,
\[d(T(v, v), g_v) \leq E s \left[d(T(v, v), g) + d(g, g_v) \right] \]
Letting \(n \to \infty \) in above inequality,
\[\lim_{n \to \infty} d(T(v, v), g_v) \leq E s d(T(v, v), g) \] (15)
Taking \(n \to \infty \) in (12) and using (15)
Coupled Fixed Point Theorems in Vector b-metric Space

\[
\frac{1}{s} d \left(g(v), T(v, v) \right) \leq_E t_2 d \left(T(v, v), g(v) \right) + t_6 d \left(T(v, v), g(v) \right) + s t_9 d \left(T(v, v), g(v) \right) + s t_{10} d \left(T(v, v), g(v) \right)
\]

\[
\Rightarrow d \left(g(v), T(v, v) \right) \leq_E \left(s t_2 + s t_6 + s^2 t_9 + s^2 t_{10} \right) d \left(T(v, v), g(v) \right)
\]

Since \(s t_2 + s t_6 + s^2 t_9 + s^2 t_{10} < 1 \) \quad Using condition (i)

and \(E \) is Archimedean

\[
\Rightarrow g \left(v \right) = T \left(v, v \right)
\]

\[
\Rightarrow (v, v) \text{ is a coupled coincidence point of } T \text{ and } g.
\]

For uniqueness of couple coincidence point \((v, v) \), suppose \((v', v') \) be another coupled coincidence point of \(T \) and \(g \). Then

\[
d \left(g(v), g(v') \right) = d \left(T(v, v), T(v', v') \right)
\]

\[
\leq_E t_4 d \left(g(v), g(v') \right) + t_5 d \left(g(v), g(v') \right) + t_4 d \left(T(v, v), g(v) \right) + t_5 d \left(T(v, v), g(v) \right)
\]

\[
+ t_5 d \left(T(v, v), g(v) \right) + t_4 d \left(T(v, v), g(v) \right) + t_5 d \left(T(v, v), g(v) \right) + t_5 d \left(T(v, v), g(v) \right)
\]

\[
d \left(g(v), g(v') \right) \leq (t_1 + t_2 + t_7 + t_8 + t_9 + t_{10}) \cdot d \left(g(v), g(v') \right)
\]

Since \(t_1 + t_2 + t_7 + t_8 + t_9 + t_{10} < 1 \)

\[
\Rightarrow g \left(v \right) = g \left(v' \right)
\]

Hence \((v, v) \) is the unique coupled coincidence point of \(T \) and \(g \).

Since \(T \) and \(g \) are weakly compatible, then

\[
\Rightarrow g \left(T(v, v) \right) = T \left(g(v), g(v) \right)
\]

Put \(w = g \left(v \right) \)

\[
g \left(w \right) = g \left(g(v) \right) = g \left(T(v, v) \right) = T \left(g(v), g(v) \right)
\]

\[
\Rightarrow (w, w) \text{ is coupled coincidence point of } T \text{ and } g.
\]

By uniqueness of coupled coincidence point of \(T \) and \(g \), \(w = v \) i.e. \(g \left(y \right) = v \)

But \(T(v, v) = g(v) = v \)

\[
\Rightarrow (v, v) \text{ is coupled fixed point of } T \text{ and } g.
\]

Corollary 3.3 Let \((Z, d, E) \) be Archimedean \(E \)-b-metric space with constant \(s \geq 1 \) and \(E \)-Complete. Let \(T : Z \times Z \rightarrow Z \) be a mapping. Suppose there exist non-negative constants \(t_i, 1 \leq i \leq 10, i \in \mathbb{N} \) such that

\[
d \left(T(u, v), T(p, q) \right) \leq_E t_1 d \left(u, p \right) + t_2 d \left(v, q \right) + t_3 d \left(T(u, y), u \right)
\]

\[
+ t_4 d \left(T(v, u), v \right) + t_5 d \left(T(p, q), p \right)
\]

\[
+ t_6 d \left(T(q, p), q \right) + t_7 d \left(T(u, v), p \right)
\]

\[
+ t_8 d \left(T(v, u), q \right) + t_9 d \left(T(p, q), u \right) + t_{10} d \left(T(q, p), v \right)
\]

holds for all \(u, v, p, q \in Z \).

If \(s \left(\sum_{i=1}^{6} t_i \right) + t_7 + t_8 + \left(s^2 + s \right) t_9 + \left(s^2 + s \right) t_{10} < 1 \), then \(T \) has a unique coupled fixed point.

Proof: Simply take \(g=I \) (identity) in theorem 3.2 and repeat the above proof.

Corollary 3.4 Let \((Z, d, E) \) be Archimedean \(E \)-b-metric space with constant \(s \geq 1 \) and \(E \)-Complete. Let \(T : Z \times Z \rightarrow Z \) be a mapping. Suppose \(\exists t_i, i = 1, 2, ..., 10 \) where \(t_i \geq 0 \) such that
\[
d(T(u,v), T(p,q)) \leq t_1 d(u,p) + t_2 d(v,q) + t_3 d(T(u,v), u) \\
+ t_4 d(T(v,u), v) + t_5 d(T(p,q), p) \\
+ t_6 d(T(q,p), q) + t_7 d(T(u,v), p) \\
+ t_8 d(T(v,u), q) + t_9 d(T(p,q), u) + t_{10} d(T(q,p), v)
\]
holds \(\forall u, v, p, q \in Z \).

If \(\sum_{i=1}^{8} t_i + 2t_9 + 2t_{10} < 1 \), then \(T \) has a unique coupled fixed point.

Proof: Put \(s = 1 \) in the proof of above corollary 3.3.

Example 3.5 If \(Z = \mathbb{R} \), \(E = \mathbb{R}^2 \), let \(d(u,v) = (|u-v|^2, |u-v|^2) \) where \(\alpha, \beta \geq 0, \alpha + \beta > 0 \).

Delineate \(T : Z \times Z \rightarrow Z \) and \(g : Z \rightarrow Z \) by

\[
T(u,v) = \frac{u-v}{12}, \quad g(u) = 1 - \frac{u}{2}
\]

Then \(T(Z \times Z) \subseteq g(Z) = Z \)

Then

\[
d\left(T(u,v), T(p,q) \right) = d\left(\frac{u-v}{12}, \frac{p-q}{12} \right)
\]

\[
= \left(\alpha \frac{|u-v-p+q|^2}{12^2}, \beta \frac{|u-v-p+q|^2}{12^2} \right)
\]

\[
\leq \left(\alpha \frac{|u-p|^2 + |v-q|^2}{12^2}, \beta \frac{|u-p|^2 + |v-q|^2}{12^2} \right)
\]

\[
= \frac{2}{72} \left(\alpha \frac{|u-p|^2}{2^2} + \frac{|v-q|^2}{2^2}, \beta \frac{|u-p|^2}{2^2} + \frac{|v-q|^2}{2^2} \right)
\]

\[
= \frac{1}{36} \left[d(g u, g p) + d(g v, g q) \right]
\]

\[\Rightarrow t_1 = t_2 = \frac{1}{36} \quad \text{for } i = 3, 4, \ldots, 10\]

\[t_1 + t_2 = \frac{1}{18} < 1\]

REFERENCES

