Abstract — Automation can significantly profit agricultural science by aiding in quality grading of agricultural produce. Dry Red Chilli is one major agricultural exports of India. Automated procedures can help in assessing the quality of various fruits and vegetables. The primary selling point of Chillies is their sensory qualities-visual appearance and odour. Chilli is sorted based on size and shape, and it is usually performed manually, is time-consuming and inconsistent. The current research proposes the use of a Fourier Transform based algorithm to assess the area and perimeter of the chillies. This algorithm can be used in a Computer Vision system to sort the chillies based on the Morphological Characteristics.

Keywords: Red Chilli; Fourier Transforms; Binarisation; Flood-fill.

I. INTRODUCTION

Red Chilli (Capsicum annum L.) is a commonly used commodity in subtropical and tropical cooking, mainly owing to its nutritional significance [1]. Red chilies are used to add flavour to food and also for various medicinal purposes.

In India, the complete area under red chilli cultivation is 792,000 hectares. India adds one-fourth of dry chilli production worldwide and has a 22% share of total spice export basket. [2]

Fourier transform relates to frequency domain depiction as well as mathematical operations associating frequency domain representation to a time function. A time function's Fourier transformation is itself a complex-evaluated frequency function whose size (modulus) depicts the amount of that frequency present in the original function, and whose meaning is the inverse phase of the basic sinusoid in that frequency. The Fourier transform is not limited to time functions but is commonly called the time domain as the original function domain.

II. MATERIALS AND METHODS

The Images were acquired using the Cost-Effective Test Bed for a Computer Vision System [3]. The methodology of the study is shown in Fig. 1. Table I describes the various materials and methods used in the study.

Legend for Fig. 1:
- Image Acquisition
- Image Pre-processing and Segmentation
- Feature extraction and Selection
- Classification

Revised Version Manuscript Received on 30 May, 2018.
Dasharathraj K Shetty, Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
(Email: raja.shetty@manipal.edu)
Dr. Dinesh Acharya, U. Computer Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
(Email: dinesh.acharya@manipal.edu)
Prajual P.J, Electrical and Electronics Engineering, Manipal Academy of Higher Education, Manipal, Karnataka, India.
(Email: pprajual@gmail.com)
Namesh Malarout, Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
(Email: namesh051195@gmail.com)
Dr. Narendra V.G.U, Computer Engg., Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
(Email: narendra.vg@manipal.edu)
Calculation of Area and Perimeter of Guntur and Byadagi Chilli Images - A Fourier Transformation

Table 1: Materials and Methods

<table>
<thead>
<tr>
<th>Chilli Type</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byadagi and Guntur (Sanam)</td>
<td>(Fig. 2)</td>
</tr>
</tbody>
</table>

Proportion of Chilli used: 1.0 kg of dry chilli of each type

Image Acquisition: Using Digital Camera and the setup as proposed in our previous work A Cost-Effective Test Bed for a Computer Vision System [4]

Image Processing Tool Used: MATLAB 2016 b

Manual Measurement: Graphical Method was used for manual area calculation of Chilli as shown in Fig. 3. [5]

Morphological characteristics:

<table>
<thead>
<tr>
<th>Considered for the study</th>
<th>Length(L): The lengthiest dimension of dry red chilli (cms)</th>
<th>Girth(G): The distance around dry red chilli (cms)</th>
</tr>
</thead>
</table>

Exclusions: Pods

Error Calculation: Difference between the Manual measurement and Fourier-based approach

III. ALGORITHM

It was observed during the study that the removal of the high-frequency components removed the variation in shades of colours and only maintained the basic shapes of the objects. Further, it was observed that using a low pass filter enabled in the extraction of the shape of objects within the image. On following a trial and error approach, the ideal filter parameters for our defined experimental conditions were obtained. The basic shape came under low-frequency components and the detailing and other contours come under high frequency. In this case, r matrix was taken for the Fourier analysis. Fourier retained the primary colour red from the background, and the displayed the chilli as black as the colour of the chilli is closer to a darker shade of red.

![Flowchart for Fourier based Feature Extraction](image)

Fig. 3 shows the Flowchart for Fourier based Feature extraction.

1. Fourier Transformation of Red Channel Data
2. Low Pass Filtering
2.1 Logical filter generation

\[a(x, y) = \begin{cases}
1, & f(x, y) \leq r \\
0, & \text{otherwise}
\end{cases} \]

\[f(x, y) = \sqrt{\left(x - \frac{X}{2}\right)^2 + \left(y - \frac{Y}{2}\right)^2} \]

Where,

- x is Row Index
- y is Column Index
- X is Total Rows
- Y is Total Columns
- r is the low pass filter value determined based on lighting and other conditions.

2.2 Filtering

\[DFT' (x, y) = \begin{cases}
DFT T (x, y), & L(x, y) = 1 \\
0, & \text{otherwise}
\end{cases} \]

(one to one multiplication of L DFT)

Where,
L is Logical Filter Matrix
DFT is Fourier Transformed Image Matrix

3. Inverse Fourier Transformation

4. Binarisation of Image:
Otsu’s thresholding technique was used for automatic threshold determination by maximizing inter class variance and minimizing the intra class variance within the processed image.

4.1 Nobuyuki Otsu’s Method [6]
The algorithm exhaustively searches for the threshold that minimizes the intra-class variance, defined as a weighted sum of variances of the two classes:

\[
\sigma^2_0(t) = \omega_0(t)\sigma^2_0(t) + \omega_1(t)\sigma^2_1(t)
\]

\[
\omega_0(t) = \sum_{i=0}^{t-1} p(i)
\]

\[
\omega_1(t) = \sum_{i=t}^{L-1} p(i)
\]

\[
\sigma^2_0(t) = \sigma^2 - \sigma^2_0(t) = \omega_0(\mu_0 - \mu_T)^2 + \omega_1(\mu_1 - \mu_T)^2
\]

\[
= \omega_0(t)\omega_1(t)[\mu_0(t) - \mu_1(t)]^2
\]

\[
\mu_0(t) = \frac{\sum_{i=0}^{t-1} ip(i)}{\omega_0(t)}
\]

\[
\mu_1(t) = \frac{\sum_{i=t}^{L-1} ip(i)}{\omega_1(t)}
\]

\[
\mu_T = \frac{\sum_{i=0}^{L-1} ip(i)}{\omega_0 + \omega_1}
\]

where,
\(\omega_0\) and \(\omega_1\) are the probabilities of the two classes
\(T\) is the threshold which separates the two classes
\(\sigma^2_0\) and \(\sigma^2_1\) are the variances of the two classes
\(L\) is the number of bins of the image histogram
\(\omega_0(t)\) and \(\omega_1(t)\) are the class probabilities of the two classes
\(\mu_0(t)\) and \(\mu_1(t)\) are the class means of the two classes

5. Flood-filling the Binarised Image

Fig. 5 (a) Matrix of sub-image (b) Matrix obtained using 4-connectivity (c) Matrix obtained using 8-connectivity

6. Geometrical Property Value Extraction
The area of an object \(O, A_o\), is defined as the number of pixels in \(O\).

\[A_o = \{ \{x,y\} | p(x,y) \in O \} \]

where,
p is the pixel matrix \((x,y)\) p to be replaced with beta symbol
\(O\) is the set of binary pixels contained within the Object
\(A_o\) is the area of the Object \(O\)

Fig. 5. (a), (b) and (c) shows the working of Flood-fill Algorithm. [8]

Fig. 6 Patterns for calculating perimeter [9]
The perimeter of \(O, P\), can be calculated by the numbers of patterns \(B_1, B_2, B_3,\) and \(B_d\) shown in Fig. 6 in the object \(O\). Let \(N_i\) be the numbers of \(B_i\), then, \(P\) can also be calculated as follows [9], where \(K1 = 1/\sqrt{2}\), \(K2 = 1\), \(K3 = 1/\sqrt{2}\), and \(Kd = \sqrt{2}\), respectively.

IV. RESULT AND DISCUSSION

Fig. 7 Binary image of the Guntur Chilies extracted from the RGB image using Fourier (Algorithm 2)
Fig. 8 Binary image of the Byadagi Chillies extracted from the RGB image using Fourier (Algorithm 2)

Fig. 7 shows the Binary image of the Guntur Chillies extracted from the RGB image using Fourier (Algorithm 2) and Fig. 8 shows the Binary image of the Byadagi Chillies extracted from the RGB image using Fourier (Algorithm 2).

The Algorithm developed calculated the Area with an accuracy of 64.16%.

V. CONCLUSION

The Fourier Transformation based Algorithm presented in this paper used the RGB Model to which the Discrete Fourier Transform was applied. The algorithm achieved an accuracy of 64.16%. The limitation of the study is that the threshold values must be calculated again if the lighting condition changes or the variety of Chilli changes. The parameters extracted included the area and perimeter of the chilli. The error percentages between the extracted and manually measured values were 35.84% which is reasonably okay. Further, the features extracted can be used for automated classification of the Chillies based on the morphological features using techniques like Self Organising Maps. These can be used to develop a Computer Vision system for automated Chilli Sorting.

VI. REFERENCES

VII. AUTHORS PROFILE

DASHARATHRAJ K SHETTY
Email Id: raja.shetty@manipal.edu
Affiliation: Humanities and Management
Manipal Institute of Technology, Manipal
Manipal Academy of Higher Education, Manipal

DR. DINESH ACHARYA U
Email Id: dinesh.acharya@manipal.edu
Affiliation: Computer Engg.
Manipal Institute of Technology, Manipal
Manipal Academy of Higher Education, Manipal

PRAJUAL PJ
Email Id: pjprajual@gmail.com
Affiliation: Electrical and Electronics Engineering, Manipal
Manipal Academy of Higher Education, Manipal

NAMESH MALAROUT
Email Id: namesh051195@gmail.com
Affiliation: Humanities and Management
Manipal Institute of Technology, Manipal
Manipal Academy of Higher Education, Manipal

DR. NAREN德拉 VG
Email Id: narendra.vg@manipal.edu
Affiliation: Computer Engg.
Manipal Institute of Technology, Manipal
Manipal Academy of Higher Education, Manipal