Wearable Wireless Sensor System with RF Remote Activation for Industrial Applications

G Ahmed Zeeshan, R Sundaraguru, Fahmeeda Naaz

Abstract—These days, Sensors are playing very important role in the world with combination of Wireless Technology. Wireless Sensor System makes the human life simpler and smarter. This emerging Technology helps in Industrial Applications. Safety and Security standards to employee position observation and industrial premises monitoring is also important towards safety Industrials. In this paper we are introducing advanced sensor system called Wearable Wireless Sensor System. It is the combination of Wireless Sensors and Wearable Technology for significant safety enhancement in Industrials. We built up a wearable wireless sensor framework which is appended in a consistent wearable format & utilized to work environment observation. Wireless Sensors are temperature, smoke sensor and LPG Gas sensor. The fundamental element of designed framework is likelihood could be actuated wirelessly through a RF module with radio signal at a frequency of 850 MHz to 865 MHz. It performs different wearable sensing module framework, for example, changing the framework from rest, estimation, and information transmission modes when outside RF sign is accessible. The exploratory information exhibit that the actuation separation distance is 2.8 m to a RF module with an intensity of 28 dBm. Advanced Wearable System framework can signalize about worker nearness in connection to offices. If any alert through high temperature, smoke or gas leakage RF wireless module alert us through buzzer and we control the same thing through Wireless Technology. All info and output modules are interfaced to Arduino Microcontroller with procedure input information and furnish yield with assistance of 5V controlled power supply. In this task we utilized Arduino ide programming to compose c program and accumulating.


I. INTRODUCTION

Present day level of hardware and data innovation permits fusing electronic parts legitimately into work garbs or regular citizen garments without carrying a bodily distress towards the wear. The wireless innovation furnishes dressable gadgets with RF association, additionally this is an association with significant system administrations for capacity and handling information of each wearer. This innovation additionally gives remote observing element, the information of dressable could be detected by equipped staff distantly and connection to elements of dressable gadgets is done. There are great deals of calling in industry and administration parts which are influenced by various risks. Simultaneously, the security benchmarks for modern plants become harder as for representative state observing and checking of working ecological conditions. Along these lines, it is important to give ongoing wireless observing of both worker state and working environment natural conditions. Different kinds of Wireless Sensor Networks (WSN) have been grown as of late. These systems comprises of little hubs and are furnished with handsets, chip and sensors. They can be utilized in various everyday issues such as ecological, human checking, home computerization and so on. With the help of proposed system, advanced safety and security in Industrial Applications is new era in present and also the employee safety and monitor is observed wirelessly through this system.

II. LITERATURE OVERVIEW

Writing Survey to neutralize the perilous impacts of gas spillage, critical endeavors was completed in manipulative and scaling down the gas break locating procedure. The events of gas release related occurrences are contemplated by a few analysts and have distributed factual information episodes. In 2012, Some vital detailed "Vitality Aware Gas Sensing Using Wireless Sensor Networks" concentrating on a sensor hub, hand-off hub, remote sensor system and a system organizer [1]. System organizer is a principle element of WSN. Bolsters a system activity by wireless correspondence dependent on the IEEE 802.15.4 standard and the ZigBee determinations. The system organizer is additionally in charge of alarming a system administrator or a crisis administration utilizing the internet system or alerting a SMS using GSM modem. Indeed, after accepting the alarm with the sensor hub, a system facilitator be able to carry out the primary oppose activity by switching off harmful gas emanation by means of the remote sensors. Similar creators have additionally added to the additional vehicle security through a truck lodge , air excellence screen utilizing CO & O2 gas modules , framework structured is created and on-street tried. The consistent observing gases of CO & O2 gives included vehicle wellbeing a caution and can be put off perilous gas focuses, driver’s weariness / sleepiness and Fumes hazardous gas result suicides. CO groupings of 30 ppm & O2 gas levels less than 19% practiced when driving. A "GSM Based Gas spillage Detection System" by Srivastava and Prabhukar gives a practical and profoundly precise framework, which distinguishes the gas spillage as well as caution , mood killer the main power and gas supplies and sends a SMS. Ramada and Palaniappan detailed an "Implanted System for Hazardous Gas Detection and Alerting". The cautioning of gas spillage is through buzzer and SMS. A"WSN based Smart System for Detection of LPG..."
and Combustible Gases” has been proposed by Hemiacetal 
[2], which distinguishes possibly unsafe gas spill inside a 
zone by methods for different sensors based electronic 
frameworks. These frameworks additionally utilize a 
discernible caution to alarm the individuals at whatever point a 
perilous gas is distinguished. These gas has 10 identification 
framework which is enormous helpful, these frameworks are 
able to utilized to distinguish a broad scope of burnable, 
combustible & poisonous gases which effectively affect 
human wellbeing. “Plan Implementation of an Economic 
Gas Leakage Detector” [3] by Mahalingam gave the 
financially savvy broad media answer for LPG spillage 
discovery in homes and business environment and 
perceptibly alert the clients in the event of a perilous 
circumstance & give cautioning signal (blares).

III. EXISTING SYSTEM

Synergist, optical and semiconductor sensors are broadly 
utilized in checking ignitable hazardous gases continuously 
in Industrial applications. Synergist sensor modules are 
broadly utilized for ignitable gas with scope of Less 
explosive boundary, because of high affectability, selectivity, 
straight reaction and minimal effort. Along those sensor 
modules we picked reactant remote sensor for the proposed 
wearable sensor system framework. In present days we are 
utilizing Gas Detection modules, which can quantify 
information from working spot which gives alert. With this 
framework time utilization, Power utilization additionally is 
high and because more harm is happening to maintain a 
strategic distance. To secure worker and work place we are 
presenting Wireless Sensors which are savvy, low power and 
quick.

IV. PROPOSED SYSTEM

In the proposed system we introduced a wearable sensor 
framework which is assigned for checking natural 
consideration and giving representatives to wellbeing unsafe 
enterprises, for industrials. In this present wearable 
framework we are utilizing Temperature, LPG Gas and 
Smoke sensors which constantly screen the information and 
if any crisis condition occur it offer alarm to verify worker 
and work place. In this paper we are utilizing RF framework 
by which we can control gadgets remotely to screen the 
nearness of the worker. The wearable framework proposed in 
this work, gives information gathering and guarantees staff 
security. If there should arise alerts in the remote initiation 
area, association with WSN set up. With this framework time 
utilization, Power utilization is low and because recently 
more harm happening to maintain a strategic distance from 
and secure worker and work place we are presenting Wireless 
Sensors which are savvy, low power and quick. The proposed 
framework expands the responsibility of representatives at 
mechanical offices by giving an ongoing checking of gas 
fixation, which for our situation is methane.

V. METHODOLOGY

The proposed framework is design for Industrial 
Applications. This framework comprising of Wireless 
Sensors such as temperature sensor, smoke sensor and LPG 
Gas sensor. RF Modules are RF Tx and RF Rx, LCD, Buzzer.

Temperature sensor, Smoke Sensor, Gas Sensor detects the 
information and screen in LCD, if in case temperature or gas 
or smoke builds it ought to illuminate naturally caution give 
by the buzzer module. RF module is utilized to control the 
actuates remotely. At the point when the individual went into 
the RF zone it will give the status of the worker present. By 
utilizing RF module we can control WSN sensors enactment 
from rest mode.

VI. FUNCTIONAL DESCRIPTION

A. Regulated Power Supply

This is a little +5V managed power supply circuit. All 
things considered here are utilized by 7805 Voltage 
Regulator IC. 7805 is a +5 Volt controller IC from 78xx chips 
family. The circuit has inward current restricting and warm 
assurance limit.

B. ARDUINO Microcontroller

To design to the proposed system we are using ARDUINO 
microcontroller to interface input and output modules and as 
processing unit. Arduino uno is having 28 pins which are 
classified as analog and digital 
pins D0 to D13 are digital
Pins, all digital sensors will connect to digital port. A0 to A5 are analog port, all analog sensors are connected to analog port. It is 8 bit microcontroller and having 32KB memory for data and program memory. Operating frequency is 16MHz. We are using ARDUINO development board and ATMEGA328 SMD IC.

E. LPG gas sensor

MQ-6 Sensor used as LPG gas sensor. This sensor sense the liquid petroleum methane gases. This sensor circuit is having a device which acquire methane gas and gas particles and are converted to voltage. A sensor module having comparator circuit which than converts to logic level 0 and logic 1. The role of MQ-6 sensor is to sense the methane gas content and send alert to the microcontroller than microcontroller activates the alarm.

D. RF Remote Control

RF module is one of very important wireless data communication device. It’s having transmitter which sends data through transmitting antenna, which is inbuilt in module. It also have receiver which receives data and give to microcontroller. The role of the RF module in this method is to give smoke and temperature alerts and control devices automatically in industrial.

F. SMOKE sensor

MQ-2 is a Sensor for Natural Gases Sensitive material. MQ-2 Sensor used as Smoke gas sensor. This sensor sense the carbon monoxide gases. This sensor circuit acquire a gas and carbon monoxide gas particle which are converted to voltage and after that sensor module having comparator circuit gets converted to logic level 0 and logic 1. The role of MQ-2 sensor is to sense the carbon monoxide gas content and send alert to the microcontroller and microcontroller activates the alarm.

G. Temperature sensor

Temperature sensor is used to measure the surrounding temperature and alerts when the threshold voltages across that. LM35 module used as Temperature sensor is having 3 terminals voltage, ground and data. Operating voltage is 5V and it can withstand voltage range from -55°C to +150°C. Thermostat is capable of observing heat. The role of LM35 is that whenever temperature crosses the limit than automatically it alert microcontroller and controller takes action.
Wearable Wireless Sensor System with RF Remote Activation for Industrial Applications

Fig. 8. Temperature sensor

H. Buzzer

Piezo buzzer is an electronic device which generate sound. The working of buzzer is when electrical signal applies on it than it gets converted to sound waves; simply voltage converted to sound than initializes by microcontroller. The role of the buzzer is to give alarm when ATM crime may happen. Buzzer is output module, its operating voltage is 5V.

Fig. 9. Buzzer

I. Software

Embedded system deals with both Software and Hardware. Software is very important module to develop programming code. To implement proposed methodology we used ARDUINO IDE Software for Embedded c language editing, compiling and dumping. Simulation is very important tool to design project virtually, before hardware implementation. We used proteus Software for simulation of complete project. Express SCH software used to design schematic diagram of project.

VII. RESULT AND DISCUSSION

We successfully interfaced all input and output modules to microcontroller. Controller performed and execute results as per the requirement. We obtained auto alerts of gas, smoke leakage and temperature high alerts. We controlled the wireless devices using RF successfully.

VIII. CONCLUSION AND FUTURE WORK

We designed a Wearable Wireless Sensor System with RF Remote Industrial Activation for Industrial Applications for safe and security of employee state and industrial environment. In this paper, we have created and effectively actualized a Remote Sensor framework designed in a uniform which is inclined to Wireless Sensors such as temperature sensor, smoke sensor and LPG Gas sensor. The system is monitored and controlled by RF module wirelessly which is implemented and executed successfully. In future we use IoT module with Wireless Sensor Framework to screen and control the information and sensor modules wirelessly. Likewise we can send information and screen all through the world.

REFERENCES


AUTHORS PROFILE

G Ahmed Zeeshan is Life Member of ISTE and working as Assistant Professor and Head in the Department of Electronics and Communication Engineering at Global Institute of Engineering and Technology, Mominabad, R R Dist., Telangana State, India.

Email: ahmedzeeshan_eng87@yahoo.com.
Dr. R Sundaraguru is working as Professor and Head in the Department of Electronics and Communication Engineering at Sir M Visvesvaraya Institute of Technology, Bengaluru, Karnataka State, India. Email: sugursg@gmail.com

Fahmeeda Naaz is pursuing M.Tech in Embedded Systems at Global Institute of engineering & Technology, Moinabad, Hyderabad, Telangana, India. Email: naazikrasheed@gmail.com