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ABSTRACT--- Simulation studies, in general, heavily rely
upon the internal variables of the system / entity in the studies. In
case of simulation study of the Spiking Neural Networks (SNNs),
the major internal system variables are membrane potentials of
the neurons and their respective synaptic inputs which demand to
be updated at a sub-millisecond resolution. It would be very apt
here to note that this requires thousands of updates to simulate
one second of an activity per neuron and this factor makes it
imperative to have a highly scalable model to derive some
inferences from the smulation. Conventionally, high
performance CPUs with high degree of multi-threading were
leveraged to conduct simulations and derive inferences. With the
advances in the hardware, the degree of parallelism has also
increased, especially the GPUs have opened a multitude of
avenues to perform SNN simulations at scale. In our pervious
works [1, 2, 3], we have demonstrated how GPUs can be
leveraged to achieve scalability and performance by using hybrid
CPU-GPU approach which have improved the performance as
compared to multi-threading on high performance CPUs. In this
work, we have focused on hyper parameter tuning of some of the
key parameters such as delay insensitivity, time step grouping
and the active synapse grouping to achieve greater simulation
speed of scalable spiking neural networks.

Keywords: SNN, SNN Optimization, delay, time step grouping.

1. INTRODUCTION

Of dl the long-term scientific investigations, the SNNs
have gained a lot of traction, especialy the point-neuron
based SNNs. One of the challenges of any simulation study
is to get as close as possible to the rea systems that are
being simulated. Point-neuron based models have been
widely used to simulate the spikes generated by the
communication between the neurons and synapses. Several
rescarchers [2-5] have presented their work which
considerably had better execution speeds compared to
others.

Simulation of SNN is unique given the fact that hundreds
of thousands of updates need to be simulated to generate one
second of activity. The neuro-temporal dynamics and their
corresponding synaptic events that are interruptive in nature
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further adds to the complexity of the simulation study and
makes it challenging to optimize. As discussed in a
subseguent section, the membrane potential is one of the
most important internal variables which is modeled and
solved using numerical methods by integrating over the sub-
millisecond time step. These spikes are interruptive as they
are characterized by the neuron membrane potential which
isinherently discontinuous or discrete like the synaptic input
whose change is characterized by the pre-synaptic spike as
shown in Figure 1. The arrival of the aforementioned events
alters the state machine of the neurons and makes them non-
Integra table and hence the analytical techniques or any
integral based model should be in aignment with the
interruption and resemble. Intuitively speaking, this
demands the forward-Euler first order numerical integration
methods to be employed to simulate such events which
makes it domineer to operate on the tiny time intervals.

Activation function
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Figure 1: SNN Architecture

Furthermore, the requirement of such large number of
updates demands the attention and the number of
calculations that are necessary to be considered to improve
the performance of the SNN simulation. Often, in many
large SNNs, it can be noted that the number of synapses
outnumbers the neurons which further increases the
complexity of such a system. Though many researchers have
leveraged the advanced hardware like the GPUs in the
simulation of SNNs as well, some of the bottlenecks in the
performance continue to persist. In this work, we propose
few performance improvement strategies with respect to
some key performance indexes.

2. METHODS

21 Prologue

In a general sense, in the realm of the GPUs, the
entities/functions that perform data transformation is called
a “kernel”.
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The kernels are responsible to process each data element
over all the GPU threads in a parallel fashion. Many such
kernels have been used by many researchers in simulation of
the SNNs to perform computationally intensive tasks such
as membrane potential updates and transformation of
neuronal spikes into corresponding synaptic inputs. This
creates a scenario which demands the network dynamics to
be synchronized in the time domain and the caller (host)
must wait until al the kernels associated with the entire
specific independent tasks complete their respective
execution in order to make it to the next time sub-
millisecond timeinterval [6].

To achieve greater accuracy, it is necessary to simulate
the large SNNs for a considerable amount of time which
means that we will have to repeatedly run the kernels for a
large number of times on the neuronal data set. Thisleads to
operational overhead of managing the life cycle of the
kernels which generally is termed as ‘“kernel launch
overhead”. Every launch of kernel performs only one task of
processing spike for a given time interval (time-step).
Considering the operational complexity and the overhead of
maintaining and managing such kernels, it is only wise to
either maximize the throughput of the kernel or lower the
launch overhead. Since launching the kernels is repeated
over the smaller time intervals, we group these time
intervals. We combine the time intervals and group them to
improve the efficiency and the throughput of the kernels.
Synapses will not have the spikes arriving in a synchronous
manner and this is another challenge which the researchers
face while simulating SNNs; the threads in the kernels
launched at times may not have any computational task to
perform and thus being end up underutilized which is
detrimental to the accuracy and speed of the simulation
experiments. The number of threads that are occupied, that
is, the number of threads which are executing a
computational task at any given instance of time is called
the occupancy of the kernel. The higher the number of
threads which are executing a computational task, the higher
isthe occupancy of the kernel [9].

It is essential to improve the occupancy of the kernels
employed to improve the overall performance of the system.
Since the spikes arrive asynchronously at any synapse, we
will group the synapses that are “active”, that is, have the
spikes coming into them and name them Active Synapse
Group (ASG) so that we can design and launch the kernels
in a way that the occupancy is optimal. Reza Haghighi and
Chien Chern Cheah [7] introduced the concept of ASG in
their work on GeNN. Inspired by their work we have tried to
combine the concept of ASG and the time grouping on the
GPU to improve the performance. The optimization
methods using time interval grouping algorithms are
discussed in Figure 2.

(A) Regular Time step centered Network Update
simulation run time (seconds)

Time interval's (seconds)
forn (1toNdo
Launch the Kernel
Update Network State
Return to Host
end for

N ——
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(B) Time Interval Grouping for Network Updates
simulation run time (seconds)
N Time intervals (seconds)

least network delay (seconds)

Time intervals (seconds)
forn «— 1to% do

Launch Kernel
for de—1toD do
Update Network State
end for
Return to Host
end for

Figure 2: Optimization Using Time Interval Grouping
(A) Regular Method without Grouping (B) Time
Interval Method with Grouping.

2.2 Time Interval Grouping

As previoudly discussed, there is always an overhead in
managing the kernels which we referred to as kernel launch
overheads. This overhead generally causes a delay in any
GPU ecosystem and this is proportionate to the number of
times the kernel is launched, that is, the number of times the
spike is updated in the SNN leading to a considerably
important computational cost. In an effort to solve this high
computational cost, we have leveraged a feature which
several SNNs models have had in the past where a delay has
been introduced in the spike arrival from the presynaptic
neuron. This delay is termed as axonal delay which we have
employed in grouping the time intervals [8,9].

In this method, the least axonal delay is used to modify
the network in the time grouped calculations. Figure 2 (A)
shows a conventional time interval grouping based update in
which the kernel launch a each update updates each
network. Figure 2(B) shows the time interva grouping
based update wherein a single kernel can be reused multiple
times to update the network. It should be noted that we do
not perform unnecessary hyper-parameter tuning to optimize
beyond its elastic limit since the SNN dynamic will get
affected resulting in highly inaccurate results. Considering
the minimum axonal delay as the baseline, we can say that
for any dice of the simulation which is shorter than this
delay, only the spikes generated before that time can affect
the neuron and hence by grouping the time intervals shorter
than or at least equal to the least axonal delay we can avoid
any SNN dynamics from being affected. Hence, all the
spiking activity that can affect the different neurons
afterward the delay can be composed at the end of the next
time interval grouping. As previously discussed, in a GPU
based ecosystem, a kernel is launched multiple times in
parale and it must be noted that we do not have much
control on the order, these parallelized threads will execute.
Le., if we want to update ‘n’ neurons from nl,n2,...,n10 we
would not know which of these neurons are updated first.
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Since these updates do not alter the dynamics of a SNN ,
we can afford to ignore the need for a synchronized
computation method while al the network activity is logged
and recorded which is referred to as “Return to Host” in
Figure 2 , reason being all the computation on the host is
executed in series without the SNN dynamics being
affected[10,11]. It now becomes trivial to comprehend that
the kernel launch numbers are minimized proportionally
equal to the time interval grouping.

Also, by employing this technique we can increase the
throughput of the kernel and since computing the update
needs to be synchronized after the task, the overall task time
will have an upper bound of the time taken by the slowest
thread of the kernel. This means that the threads on which
the execution involves the reset of the membrane potential
and its propagation are the slowest ones. However, such
events of spiking for a neuron are not dense in the time
domain meaning that for the time interval-based kernel
launches, the mgjority of would have to wait for these sparse
phenomena for only a few neurons which would have
caused a spike. However, in contrast to these conventional
techniques, the grouping of the time intervals results in
launching the kernel simultaneously on a large number of
such action potential which leads to higher occupancy of the
kernel threads and reduces the launch overhead [13].

2.3 Active Synapse Groups

More often than not, in a SNN model, the synapses
outnumber the neurons by a large magnitude. Generally,
synapses contribute either to conductance of the post-
synaptic neurons or the instantaneous current injections. Itis
trivial to mention that the computation happens only when a
spike reaches the synapse after the axona delay. Monitoring
the state machine of all the synaptic connections in the
network is simple and straight forward way of determining
when to propagate the spike generated from the presynaptic
neuron as shown in Figure 3. This causes many threadsto be
launched which perform no computation owing to the in-
activity of the presynaptic neurons, rendering the
computation of the simulation, ineffective [15-18].

(A) Naive Synapse Updating

S <«—— #Synapses

Launch Kernel

for s «— 1toSdo

if sspiked then

Update upcoming

synaptic inputs to Post-Synaptic Neurons

End if
end for

Return to Host

(B) Active Synapse Grouping
N €< # Neurons

ActiveSynapses < [ ]
Launch Kernel

for n< 1toNdo
if Neuron(n) spiked then
ActiveSynapse [] € Add(n)
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end if
end for
Return to Host
Launch Kernel
for s,.ive € ActiveSynapses do
PostSynapticNeuron [] < Add(Saive)
end for
Return to Host.

Figure 3: The synaptic updates Optimizations (A)
Conventional Method (B) ASG (Active Synapses
Grouping)

In the aforementioned approach, the kernel loops through
the neurons to check for any spike emissions. In case of a
spike being emitted the emitting connections are flagged
active and added to the active group collection. After the
successful completion of the first loop, another kernel is
launched to update all the neurons that have been set to
active in the previous step thus reducing the number of
synaptic update computations [19,20].

2.4 Delay Insensitivity

Idedlly, we need a simulator which is inert to the axonal
delays as it opens a lot of research avenues particularly in
the models that leverage the axona delay. In[22,23] authors
have demonstrated that SNN models can be used to
characterize a wide range of entities like auditory
processing, sound localization etc. which leverage the
concept of axona delays. To achieve the delay insensitivity
every neuron will make use of a circular buffer which stores
the data of the synaptic updates coming into the synapses.
The network neurons will repeat on these buffers to get the
synaptic modifications. At every time interval, the next
neuron shifts ahead by one position and reads the synaptic
input corresponding to the current interval [29,32].

Since these buffers are circular, the time complexity is
O(1) meaning it takes a constant time to add to buffer,
remove from buffer and update and help to conserve the
memory. Now, for optimizing this, if we define the length to
be equal to the maximum delay then every neuron that is
currently querying for the updates in the current time
interval can find all the inputs needed at the corresponding
delay of that synapse [32-35]. It is trivial to note here that
there is no computational overhead and hence the speed of
the simulation is not affected even after adding the delay
parameters in the transmission of the synapses. However,
for the required speed improvement we must trade the space
complexity for the sake of time complexity.

3. RESULTSAND DISCUSSION

We have simulated about 10,000 LIF (Leaky Integrate
and Fire) neurons with (2500 inhibitory and 7500
excitatory) approximately 2 percent random connectivity.
The network neurons are supplied with a 200pA input
current to excite them. Effect of the various optimizations
on GPU based SNN is as shown in Figure 4.
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Figure 4. Effect of the Var(fous Opti‘mizations on GPU
Based SNN

Vogels-Abbott benchmark is used for benchmarking the
simulation time and the results are compared with scenarios
without any optimizations, that is, the ones which use
conventional algorithms as explained in Figure 2(A) and
Figure 3 (A) which are based on brute force approach. This
condition is then compared with the ASG and Dynamic
Synapse Parallelism (DSP) technique. DSP is a technique
where the individua threads in a GPU can launch more
kernels, the feature available on the recent NVIDIA GPUs,
which was developed by [24,25].

It becomes trivia form Figure 4 that ASG proves to be
faster than the DSP and the conventional brute force
approach under the optimized environment. Time grouping
also shows a considerable speed up in both the scenarios,
that is, with and without the optimizations. We have used
identical networks for simulation and found that TG has
more speed up than others because of @) minimized launch
overhead and b) increased kernel throughput.

3.1 Multithreaded CPU Performance

In [28,29], the researchers have presented the benchmark
in a multithreaded environment in Auryn, which is the most
preferred simulator in multithreaded ecosystem and thus we
see a plausible simulator for comparison. Multithreaded
CPU vssingle GPU graph is as shown in Figure 5.

10° T
- Spike
— Auryn

107 |

Simulation Run Time (Normalized)

102

Number of CPU Cores

Figure5: Multithreaded CPU vs Single GPU

From Figure 5, it can be noted that, to come closer to the
performance of a single GPU based simulator, the
multithreaded simulator needs at least 8 cores of CPU. We
can now say with conviction that GPU based simulations
lead any benchmark, any performance parameter. Since we
can produce custom kernels for a specific simulation we can
afford to set some parameters locally to the kernel and hence
achieve better performance and aso it opens up new
avenues to perform more hyper-parameter tuning based
research experiments.
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4. CONCLUSION

A range of simulation models have been proposed each
focusing on some key performance indices and a
combination of them, that is, speed, hardware, model
definition etc. In this study, we have focused on parameters
like time interval grouping and conditional synaptic
grouping (active and in-active). Our results show a
significant speed gain by leveraging GPU when compared
with the multithreaded simulation environment. We have
noticed a significantly large improvement in simulation time
on GPU when compared to multithreaded systems and we,
therefore, are convinced to state that GPUs as a de-facto
platform for simulation of SNNs of this nature.
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