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ABSTRACT--- Simulation studies, in general, heavily rely 
upon the internal variables of the system / entity in the studies. In 
case of simulation study of the Spiking Neural Networks (SNNs), 
the major internal system variables are membrane potentials of 
the neurons and their respective synaptic inputs which demand to 
be updated at a sub-millisecond resolution. It would be very apt 
here to note that this requires thousands of updates to simulate 
one second of an activity per neuron and this factor makes it 
imperative to have a highly scalable model to derive some 
inferences from the simulation. Conventionally, high 
performance CPUs with high degree of multi-threading were 
leveraged to conduct simulations and derive inferences. With the 
advances in the hardware, the degree of parallelism has also 
increased, especially the GPUs have opened a multitude of 
avenues to perform SNN simulations at scale. In our pervious 
works [1, 2, 3], we have demonstrated how GPUs can be 
leveraged to achieve scalability and performance by using hybrid 
CPU-GPU approach which have improved the performance as 
compared to multi-threading on high performance CPUs. In this 
work, we have focused on hyper parameter tuning of some of the 
key parameters such as delay insensitivity, time step grouping 
and the active synapse grouping to achieve greater simulation 
speed of scalable spiking neural networks.  

Keywords: SNN, SNN Optimization, delay, time step grouping. 

1. INTRODUCTION 

Of all the long-term scientific investigations, the SNNs 
have gained a lot of traction, especially the point-neuron 
based SNNs. One of the challenges of any simulation study 
is to get as close as possible to the real systems that are 
being simulated. Point-neuron based models have been 
widely used to simulate the spikes generated by the 
communication between the neurons and synapses. Several 
researchers [2-5] have presented their work which 
considerably had better execution speeds compared to 
others.  

Simulation of SNN is unique given the fact that hundreds 
of thousands of updates need to be simulated to generate one 
second of activity. The neuro-temporal dynamics and their 
corresponding synaptic events that are interruptive in nature 
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further adds to the complexity of the simulation study and 
makes it challenging to optimize. As discussed in a 
subsequent section, the membrane potential is one of the 
most important internal variables which is modeled and 
solved using numerical methods by integrating over the sub-
millisecond time step. These spikes are interruptive as they 
are characterized by the neuron membrane potential which 
is inherently discontinuous or discrete like the synaptic input 
whose change is characterized by the pre-synaptic spike as 
shown in Figure 1. The arrival of the aforementioned events 
alters the state machine of the neurons and makes them non-
Integra table and hence the analytical techniques or any 
integral based model should be in alignment with the 
interruption and resemble. Intuitively speaking, this 
demands the forward-Euler first order numerical integration 
methods to be employed to simulate such events which 
makes it domineer to operate on the tiny time intervals.  
 

 
Figure 1: SNN Architecture 

 
Furthermore, the requirement of such large number of 

updates demands the attention and the number of 
calculations that are necessary to be considered to improve 
the performance of the SNN simulation. Often, in many 
large SNNs, it can be noted that the number of synapses 
outnumbers the neurons which further increases the 
complexity of such a system. Though many researchers have 
leveraged the advanced hardware like the GPUs in the 
simulation of SNNs as well, some of the bottlenecks in the 
performance continue to persist. In this work, we propose 
few performance improvement strategies with respect to 
some key performance indexes.  

2. METHODS 

2.1 Prologue 

In a general sense, in the realm of the GPUs, the 
entities/functions that perform data transformation is called 
a “kernel”.  

 
 
 

A GPU Optimized Technique for Scalable 
Spiking Neural Network Simulation 

Sreenivasa N., S. Balaji  

https://www.openaccess.nl/en/open-publications
mailto:drsbalaji@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.C6833.098319&domain=www.ijrte.org


 
A GPU Optimized Technique for Scalable Spiking Neural Network Simulation 

4613 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number C6833098319/2019©BEIESP 
DOI: 10.35940/ijrte.C6833.098319 
Journal Website: www.ijrte.org 

 

N 

N 

The kernels are responsible to process each data element 
over all the GPU threads in a parallel fashion. Many such 
kernels have been used by many researchers in simulation of 
the SNNs to perform computationally intensive tasks such 
as membrane potential updates and transformation of 
neuronal spikes into corresponding synaptic inputs. This 
creates a scenario which demands the  network dynamics to 
be synchronized in the time domain and the caller (host) 
must wait until all the kernels associated with the entire 
specific independent tasks complete their respective 
execution in order to make it to the next time sub-
millisecond time interval [6]. 

To achieve greater accuracy, it is necessary to simulate 
the large SNNs for a considerable amount of time which 
means that we will have to repeatedly run the kernels for a 
large number of times on the neuronal data set. This leads to 
operational overhead of managing the life cycle of the 
kernels which generally is termed as “kernel launch 

overhead”. Every launch of kernel performs only one task of 
processing spike for a given time interval (time-step). 
Considering the operational complexity and the overhead of 
maintaining and managing such kernels, it is only wise to 
either maximize the throughput of the kernel or lower the 
launch overhead. Since launching the kernels is repeated 
over the smaller time intervals, we group these time 
intervals. We combine the time intervals and group them to 
improve the efficiency and the throughput of the kernels. 
Synapses will not have the spikes arriving in a synchronous 
manner and this is another challenge which the researchers 
face while simulating SNNs; the threads in the kernels 
launched at times may not have any computational task to 
perform and thus being end up underutilized which is 
detrimental to the accuracy and speed of the simulation 
experiments. The number of threads that are occupied, that 
is, the number of threads which are executing a 
computational task at any given instance of time is called 
the occupancy of the kernel. The higher the number of 
threads which are executing a computational task, the higher 
is the occupancy of the kernel [9].  

It is essential to improve the occupancy of the kernels 
employed to improve the overall performance of the system. 
Since the spikes arrive asynchronously at any synapse, we 
will group the synapses that are “active”, that is, have the 

spikes coming into them and name them Active Synapse 
Group (ASG) so that we can design and launch the kernels 
in a way that the occupancy is optimal.  Reza Haghighi and 
Chien Chern Cheah [7] introduced the concept of ASG in 
their work on GeNN. Inspired by their work we have tried to 
combine the concept of ASG and the time grouping on the 
GPU to improve the performance. The optimization 
methods using time interval grouping algorithms are 
discussed in Figure 2. 

(A) Regular Time step centered Network Update 
         simulation run time (seconds) 

  Time intervals (seconds) 
for n      1 to N do 

Launch the Kernel 
Update Network State 

Return to Host 
end for 
 

(B) Time Interval Grouping for Network Updates 
         simulation run time (seconds) 

  Time intervals (seconds) 
 
                         least network delay (seconds) 

  Time intervals (seconds) 
 

for n          1 to 
 

 
  do  

 
Launch Kernel 
for  d       1 to D do 

Update Network State 
end for 

Return to Host 
end for 
 

Figure 2: Optimization Using Time Interval Grouping 
(A) Regular Method without    Grouping (B) Time 

Interval Method with Grouping. 

2.2 Time Interval Grouping  

As previously discussed, there is always an overhead in 
managing the kernels which we referred to as kernel launch 
overheads. This overhead generally causes a delay in any 
GPU ecosystem and this is proportionate to the number of 
times the kernel is launched, that is, the number of times the 
spike is updated in the SNN leading to a considerably 
important computational cost. In an effort to solve this high 
computational cost, we have leveraged a feature which 
several SNNs models have had in the past where a delay has 
been introduced in the spike arrival from the presynaptic 
neuron. This delay is termed as axonal delay which we have 
employed in grouping the time intervals [8,9].  

In this method, the least axonal delay is used to modify 
the network in the time grouped calculations. Figure 2 (A) 
shows a conventional time interval grouping based update in 
which the kernel launch at each update updates each 
network. Figure 2(B) shows the time interval grouping 
based update wherein a single kernel can be reused multiple 
times to update the network.  It should be noted that we do 
not perform unnecessary hyper-parameter tuning to optimize 
beyond its elastic limit since the SNN dynamic will get 
affected resulting in highly inaccurate results. Considering 
the minimum axonal delay as the baseline, we can say that 
for any slice of the simulation which is shorter than this 
delay, only the spikes generated before that time can affect 
the neuron and hence by grouping the time intervals shorter 
than or at least equal to the least axonal delay we can avoid 
any SNN dynamics from being affected.  Hence, all the 
spiking activity that can affect the different neurons 
afterward the delay can be composed at the end of the next 
time interval grouping. As previously discussed, in a GPU 
based ecosystem, a kernel is launched multiple times in 
parallel and it must be noted that we do not have much 
control on the order, these parallelized threads will execute.  
I.e., if we want to update ‘n’ neurons from n1,n2,…,n10 we 

would not know which of these neurons are updated first.  
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S 

 N  # Neurons  

 

S  # Synapses 

Since these updates do not alter the dynamics of a SNN , 
we can afford to ignore the need for a synchronized 
computation method while all the network activity is logged 
and recorded which is referred to as “Return to Host” in 

Figure 2 , reason being all the computation on the host is 
executed in series without the SNN dynamics being 
affected[10,11].  It now becomes trivial to comprehend that  
the kernel launch numbers are minimized proportionally 
equal to the time interval grouping.  

Also, by employing this technique we can increase the 
throughput of the kernel and since computing the update 
needs to be synchronized after the task, the overall task time 
will have an upper bound of the time taken by the slowest 
thread of the kernel. This means that the threads on which 
the execution involves the reset of the membrane potential 
and its propagation are the slowest ones. However, such 
events of spiking for a neuron are not dense in the time 
domain meaning that for the time interval-based kernel 
launches, the majority of would have to wait for these sparse 
phenomena for only a few neurons which would have 
caused a spike. However, in contrast to these conventional 
techniques, the grouping of the time intervals results in 
launching the kernel simultaneously on a large number of 
such action potential which leads to higher occupancy of the 
kernel threads and reduces the launch overhead [13].  

2.3 Active Synapse Groups 

More often than not, in a SNN model, the synapses 
outnumber the neurons by a large magnitude. Generally, 
synapses contribute either to conductance of the post-
synaptic neurons or the instantaneous current injections. It is 
trivial to mention that the computation happens only when a 
spike reaches the synapse after the axonal delay. Monitoring 
the state machine of all the synaptic connections in the 
network is simple and straight forward way of determining 
when to propagate the spike generated from the presynaptic 
neuron as shown in Figure 3. This causes many threads to be 
launched which perform no computation owing to the in-
activity of the presynaptic neurons, rendering the 
computation of the simulation, ineffective [15-18].  

(A) Naive Synapse Updating 
 
           

 
                          Launch Kernel 

for s         1 to S do 
if s spiked then  
 Update upcoming 

synaptic inputs to Post-Synaptic Neurons 
End if 

end for 
Return to Host 
 

(B) Active Synapse Grouping  
 
        
       ActiveSynapses  [ ] 
               Launch Kernel  
       for  n  1 to N do 
         if Neuron(n) spiked then 
         ActiveSynapse []  Add(n)  

          end if    
        end for  
       Return to Host 
      Launch Kernel  
                                      
      PostSynapticNeuron []  Add(sactive) 
      end for 
Return to Host.  

Figure 3: The synaptic updates Optimizations (A) 
Conventional Method (B) ASG (Active Synapses 

Grouping) 
In the aforementioned approach, the kernel loops through 

the neurons to check for any spike emissions. In case of a 
spike being emitted the emitting connections are flagged 
active and added to the active group collection. After the 
successful completion of the first loop, another kernel is 
launched to update all the neurons that have been set to 
active in the previous step thus reducing the number of 
synaptic update computations [19,20].  

2.4 Delay Insensitivity  

Ideally, we need a simulator which is inert to the axonal 
delays as it opens a lot of research avenues particularly in 
the models that leverage the axonal delay. In [22,23] authors 
have demonstrated that SNN models can be used to 
characterize a wide range of entities like auditory 
processing, sound localization etc. which leverage the 
concept of axonal delays.  To achieve the delay insensitivity 
every neuron will make use of a circular buffer which stores 
the data of the synaptic updates coming into the synapses. 
The network neurons will repeat on these buffers to get the 
synaptic modifications. At every time interval, the next 
neuron shifts ahead by one position and reads the synaptic 
input corresponding to the current interval [29,32]. 

Since these buffers are circular, the time complexity is 
O(1) meaning it takes a constant time to add to buffer, 
remove from buffer and update and help to conserve the 
memory. Now, for optimizing this, if we define the length to 
be equal to the maximum delay then every neuron that is 
currently querying for the updates in the current time 
interval can find all the inputs needed at the corresponding 
delay of that synapse [32-35]. It is trivial to note here that 
there is no computational overhead and hence the speed of 
the simulation is not affected even after adding the delay 
parameters in the transmission of the synapses. However, 
for the required speed improvement we must trade the space 
complexity for the sake of time complexity.  

3. RESULTS AND DISCUSSION  

We have simulated about 10,000 LIF (Leaky Integrate 
and Fire) neurons with (2500 inhibitory and 7500 
excitatory) approximately 2 percent random connectivity. 
The network neurons are supplied with a 200pA input 
current to excite them. Effect of the various optimizations 
on GPU based SNN is as shown in Figure 4. 

 

# Synapses 
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Figure 4: Effect of the Various Optimizations on GPU 

Based SNN 
 
Vogels-Abbott benchmark is used for benchmarking the 
simulation time and the results are compared with scenarios 
without any optimizations, that is, the ones which use 
conventional algorithms as explained in Figure 2(A) and 
Figure 3 (A) which are based on brute force approach. This 
condition is then compared with the ASG and Dynamic 
Synapse Parallelism (DSP) technique. DSP is a technique 
where the individual threads in a GPU can launch more 
kernels, the feature available on the recent NVIDIA GPUs, 
which was developed by [24,25]. 

It becomes trivial form Figure 4 that ASG proves to be 
faster than the DSP and the conventional brute force 
approach under the optimized environment. Time grouping 
also shows a considerable speed up in both the scenarios, 
that is, with and without the optimizations. We have used 
identical networks for simulation and found that TG has 
more speed up than others because of a) minimized launch 
overhead and b) increased kernel throughput. 

3.1 Multithreaded CPU Performance  

In [28,29], the researchers have presented the benchmark 
in a multithreaded environment in Auryn, which is the most 
preferred simulator in multithreaded ecosystem and thus we 
see a plausible simulator for comparison. Multithreaded 
CPU vs single GPU graph is as shown in Figure 5. 
 

 
Figure 5: Multithreaded CPU vs Single GPU 

 
From Figure 5, it can be noted that, to come closer to the 

performance of a single GPU based simulator, the 
multithreaded simulator needs at least 8 cores of CPU. We 
can now say with conviction that GPU based simulations 
lead any benchmark, any performance parameter. Since we 
can produce custom kernels for a specific simulation we can 
afford to set some parameters locally to the kernel and hence 
achieve better performance and also it opens up new 
avenues to perform more hyper-parameter tuning based 
research experiments.  

4. CONCLUSION  

A range of simulation models have been proposed each 
focusing on some key performance indices and a 
combination of them, that is, speed, hardware, model 
definition etc. In this study, we have focused on parameters 
like time interval grouping and conditional synaptic 
grouping (active and in-active). Our results show a 
significant speed gain by leveraging GPU when compared 
with the multithreaded simulation environment. We have 
noticed a significantly large improvement in simulation time 
on GPU when compared to multithreaded systems and we, 
therefore, are convinced to state that GPUs as a de-facto 
platform for simulation of SNNs of this nature.  
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