

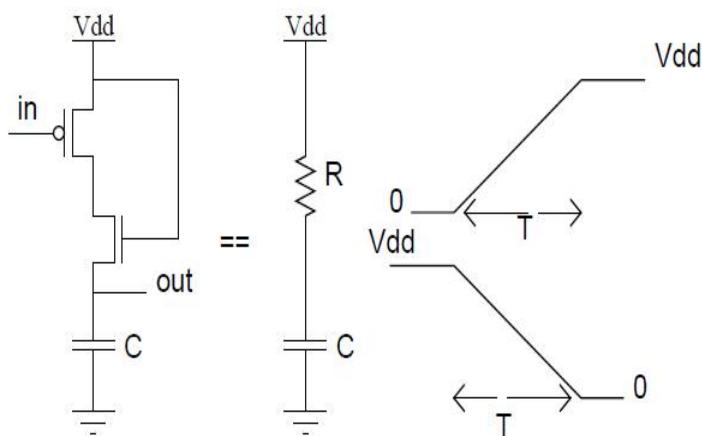
Analytical Modeling of Adiabatic Logic with the Effects and Analysis of Performance Parameter Variations

Samik Samanta, Rajat Mahapatra, Ashis Kumar Mal

Abstract: Adiabatic or energy recovery circuits are based on recycling the energy stored in nodal capacitances. For a given amount of energy stored in nodal capacitance, the energy drawn from the source depends on the rate of drawing the charge from the source. Power drawn from the source will be lower if the rate of charging is lower. The efficiency of charging of adiabatic circuits depends on how slowly the capacitance is being charged. We have presented one analytical model of adiabatic logic circuit and find out the expressions for power dissipations in charging and discharging phases. From the expression conclusions on design parameters are made. We have also examined the power dissipation of the adiabatic circuits with the variation of some device parameters like width of the transistors, load capacitance, power clock frequency and input data frequency.

Keywords : Adiabatic, CMOS, PMOS, NMOS, charge, power clock

I. INTRODUCTION


With increased scaling in CMOS technology, today's designs are capable of performing very high speed computations as the complexity and number of devices on a given IC is no longer an issue. Much of the research efforts in the recent decades have been dedicated to improving the speed of digital systems. Thus, high speed computation has become an expected norm for average users. Along with this, there is a growing desire to have access to computation at any location without being limited to a given space with a wired network. This requirement for portability of the computational device places restrictions on the size, weight and power.

Conventional CMOS logic circuit design approaches rely on charging the output capacitive nodes to the power supply V_{dd} or discharging it to ground. This design approach has been widely used. For Low power applications, although there are many techniques both at circuit level and system level, a very fundamental source of energy dissipation is the discharge of the capacitor to ground. Every time capacitor is discharged to

ground, an amount of energy $= 1/2CV^2$ stored in the capacitor is lost.

This loss of energy can be prevented if instead of discharging the capacitor to ground, the charge or energy stored can be recycled. Another way of reducing the power consumption is to design the circuit in such a way that the charging of the capacitive node takes place very slowly. Here in this scope, we have prepared an analytical model for adiabatic charging and discharging. The expressions for charging and discharging in an adiabatic circuit have been established. From the established expressions, we have suggested suitable low power adiabatic system design requirements. One glitch free adiabatic inverter is also presented here to examine the variations of power dissipation in adiabatic circuits with the device parameter variations. Depending on the simulation results, some conclusions are made on the design issues of adiabatic inverters.

II. CHARGING OF ADIABATIC CIRCUITS

Figure 1. Model of adiabatic logic circuit

The charging and discharging pattern of the adiabatic inverter and the variation of the waveform with different parameters is further investigated by considering the charging and discharging branches as composed of resistors when the corresponding branch is active. Assuming that the combination of PMOS and NMOS in series acts as a resistor of value R when both the transistors are ON, it can be seen that both the charging and discharging branch present the same resistance path. Although the transistors are not completely ON for the whole charging or discharging process, we assume this to simply our analysis.

Manuscript published on 30 September 2019

* Correspondence Author

Samik Samanta*, department Management and Science Neotia Institute of Technology, Kolkata, India

Rajat Mahapatra, Professor in ECE department of National Institute of Technology, Durgapur, West Bengal, India

Ashis Kumar, Professor in ECE department of National Institute of Technology, Durgapur, West Bengal, India

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an [open access](#) article under the CC-BY-NC-ND license <http://creativecommons.org/licenses/by-nc-nd/4.0/>

During charging, when the input is low(logic0), the MOSFET M1 is ON and as V_{ck} increases from 0 to V_{dd} , the capacitor is charged through the transistor M3. The clock voltage reaches its peak value V_{dd} in a time T . the equation for clock waveform can be written as

$$V_{ck}(t) = V_{dd} \cdot t/T \quad \dots \dots \dots (1)$$

The clock reaches a value V_{th} the threshold voltage of the MOSFET M3 at time T_{th} . The voltage V_c across the load capacitor C after T_{th} is given by

$$\frac{V_{dd}t}{T} = RC \cdot \frac{dV_c}{dt} + V_c \quad \dots \dots \dots (2)$$

$$\frac{dV_c}{dt} + \frac{1}{RC} \cdot V_c = \frac{1}{RC} \left(\frac{V_{dd}t}{T} \right) \quad \dots \dots \dots (3)$$

The solution becomes

$$V_c(t) e^{\frac{t}{RC}} = \frac{1}{RC} \frac{V_{dd}}{T} \int t e^{\frac{t}{RC}} dt + V_0 \quad \dots \dots \dots (4)$$

$$V_c(t) = e^{\frac{-t}{RC}} \left(\frac{1}{RC} \frac{V_{dd}}{T} t e^{\frac{t}{RC}} (t - RC) + V_0 \right) \quad \dots \dots \dots (5)$$

Equation (5) can be written as

$$V_c(t) = \frac{V_{dd}}{T} (t - RC) + V_0 e^{\frac{-t}{RC}} \quad \dots \dots \dots (6)$$

Now, current can be calculated as

$$i_c(t) = C \frac{V_{dd}}{T} - \frac{V_0}{R} e^{\frac{-t}{RC}} \quad \dots \dots \dots (7)$$

$$E_{charging} = \int V_{clk}(t) \left(\frac{V_{clk}(t) - V_c}{R} \right) dt \quad \dots \dots \dots (8)$$

$$\frac{1}{R} \int V_{2clk}(t) - \frac{1}{R} \int V_{clk}(t) V_c dt$$

$$\text{First term will be } \frac{1}{R} \int \left(\frac{V_{dd}}{T} \right) t 2 = \frac{V_{2dd}}{RT} \frac{t^3}{3} \quad \dots \dots \dots (9)$$

Second term will be

$$\frac{1}{R} \int \left(\frac{V_{dd}t}{T} \right) \left(\frac{V_{dd}}{T} (t - RC) + V_0 t e^{\frac{-t}{RC}} \right) dt \quad \dots \dots \dots (10)$$

$$= \frac{1}{R} \left(\frac{V_{dd}}{T} \right) 2 \frac{t^3}{3} - \frac{C \frac{V_{dd}}{T} t^2}{2} - \frac{V_{dd} V_0}{T} C e^{\frac{-t}{RC}} (t + RC)$$

So the complete expression for $E_{CHARGING}$ is

$$= \frac{1}{R} \left(\frac{V_{dd}}{T} \right) 2 \frac{2t^3}{3} - C \frac{V_{2dd} t^2}{T} - \frac{V_{dd} V_0}{T} C e^{\frac{-t}{RC}} (t + RC)$$

----- (11)

III. DISCHARGING OF ADIABATIC CIRCUITS

The equation of clock voltage during discharge is

$$V_{clk}(t) = \frac{-V_{dd}}{T} t + V_{dd} \quad \dots \dots \dots (12)$$

$$V_{clk}(t) = V_{dd} \left(1 - \frac{t}{T} \right) \quad \dots \dots \dots (13)$$

When the input is logical '1', the transistor M is ON and when the clock voltage $V_{clk}(t)$ is falling, the load capacitor discharges through M4 and M2. The differential equation in this case is

$$\frac{dV_c}{dt} + \frac{1}{RC} V_c = \frac{1}{RC} V_{dd} \left(1 - \frac{t}{T} \right) \quad \dots \dots \dots (14)$$

The voltage across the capacitor is

$$V_c(t) e^{\frac{t}{RC}} = \int \frac{1}{RC} V_{dd} \left(1 - \frac{t}{T} \right) e^{\frac{t}{RC}} + V_1$$

$$= \frac{V_{dd}}{RC} \int \left(1 - \frac{t}{T} \right) e^{\frac{t}{RC}} + V_1 \quad \dots \dots \dots (15)$$

$$V_c(t) = V_{dd} - \frac{V_{dd}}{T} (t - RC) + V_1 e^{\frac{-t}{RC}} \quad \dots \dots \dots (16)$$

$$i_c(t) = C \left(-\frac{V_{dd}}{T} - \frac{V_1}{RC} e^{\frac{-t}{RC}} \right) \quad \dots \dots \dots (17)$$

Energy consumed in discharge cycle is

$$E_{DISCHARGE} = \int V_{clk}(t) \left(\frac{V_{clk}(t) - V_c}{R} \right) dt$$

$$= \frac{1}{R} \int (V_{2clk}(t) - V_{clk}(t) V_c) dt \quad \dots \dots \dots (18)$$

$$\frac{1}{R} \int V_{2dd} \left(1 - \frac{t}{T} \right) 2 dt - \frac{1}{R} \int V_{clk}(t) V_c dt \quad \dots \dots \dots (17)$$

first part is

$$= \frac{1}{R} \int V_{2dd} \left(1 - \frac{t}{T} \right) 2 dt = -V_{2dd} \frac{ddT}{3R} \left(1 - \frac{t}{R} \right) 3 \quad \dots \dots \dots (19)$$

The second part is

$$\frac{1}{R} \int V_{clk}(t) \cdot V_c(t) dt$$

$$= \frac{1}{R} \int \frac{V_{cc} t}{T} V_{dd} - \frac{V_{dd}}{T} (t - RC) + V_1 e^{\frac{-t}{RC}} dt$$

$$E_{DISCHARGE}$$

$$= \frac{V_{dd}}{R} \left(\frac{t^2}{2T} - \frac{T}{3} \left(1 - \frac{t}{T} \right) 3 - \frac{1}{T} \left(\frac{t^3}{3} - RC \frac{t^2}{2} \right) \right) - \frac{1}{R} \frac{V_{dd}}{T} V_1 R C e^{\frac{-t}{RC}} (t + RC) \quad \dots \dots \dots (20)$$

IV. GLITCH FREE ADIABATIC CIRCUITS

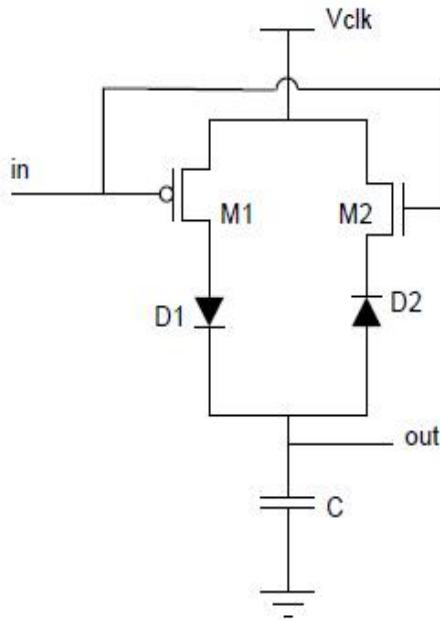


Figure 2. Diode based glitch free CAL inverter

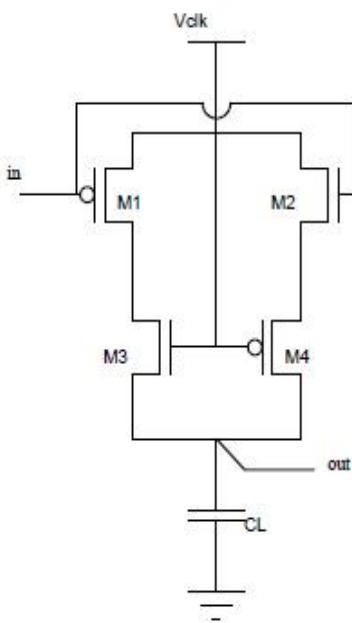


Figure 3. Diode free glitch free CAL inverter

Glitch free inverter circuits are shown in fig. The first one is diode based and the second one is modified and diode less. Transistor M1 and M3 form the charging path and M2 and M4 form the discharging path. For any applied logic either charging or discharging path will be valid. The power supply used here is trapezoidal waveform which varies from 0 and V_{dd} . In case of GFCAL inverter the transistor M1 will on and diode D1 will conduct when clock transits from 0 to V_{dd} . This results the capacitor to change and an output of high logic is obtained. When M2 transistor is on and M1 is off and diode D2 allows discharging only. That time the clock transits from V_{dd} to 0.

In case of diode free GFCAL the transistors M2 and M4 switch alternatively. These transistors allow either charging

or discharging for a given period of time. These switching transistors are controlled by the power clock signal. This power clock signal controls the charging and discharging process. Let us assume output capacitor is initially unchanged and input is in low logic level. For diode free GFCAL, the load capacitor is in uncharged state and input is low. In this case the transistor M1 turns on and when clock goes from 0 to high at some voltage when the power clock voltage exceeds the threshold voltage of M3, this will turns on and the capacitor will begin to charge. Next when transistor M2 will be on but M4 will be off, the clock transits from 0 to V_{dd} . When clock goes from V_{dd} to 0, M3 turns off and prevents discharging of capacitor. In case of diode free GFCAL, output is high or charged to some initial voltage level and the input voltage is 0, the circuit remains in the same state as before. For input level=low, the transistor M3 is on and transistor M3 allows charging operation when power clock goes from 0 to V_{dd} . So the output is in high state. Next, when M3 is on and M3, M4 will allow the discharge of the capacitor when power clock goes from high to low. M1 will be off and no further charging will take place.

V. TRANSISTOR WIDTH VARIATIONS

Increasing the width of transistors allows the circuit to charge or discharge the capacitive nodes faster. This is due to the fact that, a larger width allows more current to pass through the transistors and thus lesser time is required to charge the capacitors to a required voltage level. Although the charging and discharging processes are accelerated, there are other effects of increasing the device width. One effect is that large device dimensions mean that large capacitance of gate-source and drain-source junctions. As seen from the table1 obtained from simulation results. An increase in device width increases the power dissipation of the circuit due to increased current flow through the charging and discharging branches.

Table 1: Variation in power dissipation with transistor width

Width (μm)	Power dissipation (μW)
0.2	1.21
10	2.11
15	2.76
20	2.92

VI. LOAD CAPACITANCE VARIATION

Load capacitance takes time to charge or discharge based on its capacitance values. Large capacitance creates slow charging and discharging. Small capacitance gives very fast discharging times.

Table 2: Variation in power dissipation with load capacitance

Load capacitance (pf)	Power dissipation (μw)
5	2.11
10	2.45
15	4.17
20	6.15

VII. CLOCK FREQUENCY VARIATION

Clock frequency means power clock frequency. Power clock basically responsible for efficient charging of load capacitance. Power dissipation across the transistor depends on how fast the charging or discharging signal is varying. An increase in power clock frequency tends to increase the power dissipation.

Table 3: Variation in power dissipation with clock frequency

Clock Frequency(ns)	Power dissipation (μw)
50	300
100	324
150	335
200	356.7

VIII. INPUT DATA FREQUENCY VARIATION

Input data frequency determines how often the logic switches between high and low levels. This is how it influences power consumption of gate. It can be proved that lower input frequencies give a low power input. The minimum time period of the input signal can be equal to the time period of the power clock. The output voltage levels do not change with input data frequency. The output voltage levels are decided by the power clock voltage levels and threshold voltage of the switching transistors.

Table 4: Variation in power dissipation with clock frequency

data Frequency(ns)	Power dissipation (nw)
1	200
2	212
3	312
4	325
5	412

IX. CONCLUSION

From the analytical model it is clear that the performance parameters are responsible for adiabatic charging and discharging.

For adiabatic charging V_{dd} supply, RC time constant and value of the capacitor are responsible. Charging power is directly proportional to RC time constant, value of capacitor and V_{dd} supply. Therefore proper values of these parameters will reduce the charging power dissipation.

Discharging power dissipation is proportional to RC time constant and square of the power supply V_{dd} .

Therefore by taking proper values of power supply V_{dd} and capacitor will minimize the discharging power dissipation.

From the device parameter analysis such as transistor width, power clock frequency, input data frequency, it is clear that, to reduce power dissipation in glitch free inverters the designers have to make a tradeoff between performance and device parameter variations. Increasing transistor width, capacitance value, input data frequency will increase power dissipation. So proper device parameters will have to choose for optimum results.

REFERENCES

1. Dickinson and J.S.Denkar "Adiabatic dynamic logic" IEEE Journal of Solid State Circuits, Vol 30, No 03, pp 311-315, March 1995
2. Q. Wu, M. Pedram, and Xunwei Wu, "Clock-gating and its application to low power design of sequential circuits," IEEE Transactions on Circuits and Systems I, vol. 47, no. 3, pp. 415-420, Mar 2000.
3. B. S. Kong, *et al.*, "Conditional-capture flip-flop for statistical power reduction," IEEE Journal of Solid-State Circuits, vol. 36, pp. 1263-1271, Aug. 2001.
4. S. L. Hurst, "Multiple-valued logic. Its status and its future," IEEE Trans. Comput., vol. C-33, pp. 1160-1179, Dec. 1984
5. H. Partovi, *et al.*, "Flow-through latch and edge-triggered flip-flop hybrid elements," IEEE International Solid-State Circuits Conference, pp. 138-139, Feb 1996.
6. Y. Ye and K. Roy, "Reversible and quasistatic adiabatic logic," in European Conf. Circuit Theory and Design, 1997, pp. 912-917.
7. Michael P. Frank, "Common mistakes in adiabatic logic design and how to avoid them," Proceedings of the International Conference on Embedded Systems and Applications, held in Las Vegas, Nevada on June 23-26, 2003, pp. 216-222, CSREA Press.
8. Anantha P. Chandrakasan, Robert W. Brodersen, "Low Power Digital CMOS Design", Kluwer Academic Publishers, 2002.
9. Priyanka Ojha, Charu Rana, "Design of Low Power Sequential Circuit by using Adiabatic Techniques", I.J. Intelligent Systems and Applications, 08, 45-50, July 2015.
10. P.D. Khandekar, S Subbaraman, Manish Patil "Low power Digital Design Using Energy-Recovery Adiabatic Logic" International Journal of Engineering, Research and Industrial Applications, Vol1, No.III, pp199-2081994, pp. 94-97.
11. S.Samanta "Adiabatic Computing" a contemporary review" 4th international conference on computer and devices for communication: codec 09. Kolkata 2009.
12. S.Samanta "Power Efficient VLSI Inverter Design using Adiabatic Logic and Estimation of Power dissipation using VLSI-EDA Tool" Special issue of International Journal of computer communication Technology.vol 2. issue 2,3,4,pp300-303. 2010
13. S.Samanta "Design & Analysis of Adiabatic Logic based Multiplexers for Ultra Low Power Applications" to be published in IJIRSET current volume Feb. 2015.
14. A Podder, S Mal, A Chowdhury, A Mondal, M Chanda "Design and analysis of adiabatic adder in near-Threshold regime for low power application" Devices for Integrated Circuit (DevIC), 2017.

15. Mark C. Johnson, Dinesh Somasekhar, and Kaushik Roy. Leakage control with efficient use of transistor stacks in single threshold CMOS. In DAC '99:Proceedings of the 36th annual ACM/IEEE Design Automation Conference, pages 442–445, New York, NY, USA, 1999. ACM.
16. S.Samanta,R.Mahapatra,A.K.Mal “Analysis of Adiabatic flip-flops for Ultra Low Power Applications” International conference on Devices for Integrated Circuit (DeVIC),2019

AUTHORS PROFILE

Samik Samanta, is associated with Neotia Institute of Technology, Management and Science, India. He has 16 years of teaching experience. His field of interests are low power VLSI design, adiabatic logic and SoC design. He is also a research scholar of National Institute of Technology, Durgapur, India

Rajat Mahapatra, is currently working as Professor in ECE department of National Institute of Technology, Durgapur. He has 16 years of teaching and research experience. His field of interests are VLSI device modelling, Low power VLSI design and resistive memory devices. He has worked as principal investigator in various funded projects.

Ashis Kumar Mal is currently working as Professor in ECE department of National Institute of Technology, Durgapur. He has more than 25 years of teaching and research experience. His field of interests are digitally assisted analog circuits, Analog and mixed signal VLSI and integer sequences. He has worked as principal investigator in various funded projects.