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 
Abstract: Standardization of decimal floating-point formats by 

IEEE in IEEE 754-2008 Standards fuelled the interest on decimal 
floating-point architectures among the global research 
community. Although decimal arithmetic architecture research 
attracted computer scientists for the last two decades, the major 
thrust was observed past the year 2008. Multiple proposals have 
been witnessed for  decimal arithmetic units, mostly 
adders/subtractors, and multipliers. Very few designs have been 
proposed in the division domain. This article proposes decimal 
division hardware based on sutras from Vedic Mathematics, the 
ancient mathematics system. We present a Reduced Magnitude 
Divisor Generator which converts each digit of the actual divisor 
into a reduced digit set [-5, 5] using a unique 
combination/modification of the Vedic Sutras. The divisor digit 
magnitude reduction also minimizes the product set of 
multiplication as the single-digit multiplier belongs to the reduced 
digit set [0, 5] barring the sign. The sign of the dividend or the 
divisor is not attended during division as a simple XOR operation 
on the two signs provides the sign of the quotient. Peer 
comparison has exhibited better results for our design in terms of 
space and time. 
 

Keywords: Decimal division, Vedic division, Vedic sutras, 
Division architecture, Reduced Magnitude Divisor Generator, 
IEEE 754-2008.  

I. INTRODUCTION 

Division is generally observed to be a low priority 
operation with respect to its counterparts, viz. addition, 
subtraction, and multiplication, by the processor designers. 
Thereby chip and resource allocation get affected in addition 
to development efforts. Most of the research on decimal 
division has primarily focused on iterative procedures for 
concise approximation of the divisor reciprocal using 
Newton-Raphson or other such recurrence expressions. 
Vedic mathematics provides a few sutras which deal with 
division procedure either standalone or in combination with 
other sutras and corollaries. The sutras generate reduced 
magnitude operands and eliminate subtraction from the 
whole process of division, altogether making the division 
process faster. Software implementation for division using 
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Vedic sutras has been observed in [1] [2] [3] [4]. We provide 
a hardware realization for the Vedivision Algorithm presented 
in [3]. The algorithm is generic and consists of contribution 
from two sutras from Vedic Mathematics – the Nikhilam and 
the Paravartya sutras. Limitations imposed by both the 
Nikhilam and the Paravartya Sutra regarding the magnitude 
of the divisor compelled the design of the generic algorithm. 

The rest of the paper is arranged as follows. The next 
section provides the related work. Section 3 presents the two 
Vedic sutras which have been used – Nikhilam and 
Paravartya sutra concluding with the algorithm - Vedivision. 
Section 4 presents the proposed hardware design and details. 
Section 5 provides the performance analysis followed by the 
conclusion. 

II. RELATED WORK 

Decimal division hardware inventions have mostly been 
patented [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 
[17]. The decimal division is realized using Millicode 
(vertical microcode) instructions as a sequence of simple 
operations [6]. Millicode instructions are a special type of 
instructions in IBM Power4 Systems [18]. These instructions 
are dispatched in groups having a maximum of five IOPs 
(internal operations). The decimal division is split into 
Millicodes (smaller instructions) and the most significant 
digit of the normalized divisor and the partial remainder 
generates the trial quotient using digit recurrence. This trial 
quotient so obtained accesses the Dividend Multiple Table 
wherein trial quotient adjustments are determined using a 
simple addition/subtraction. Nikmehr, Phillips, and Lim [19] 
have proposed a fast decimal floating-point division based on 
the high radix SRT division [20] [21] [22]. Research in [23] 
and [24] also provided VLSI implementations based on SRT 
digit recurrence division algorithms. Quotient Digit Selection 
(QDS) [25] function complexity governs the efficiency of an 
SRT divider; where the QDS function calculates a fixed 
number of bits of the quotient every iteration and is 
implemented using a lookup table. In [19], the partial 
remainder is represented in Decimal Signed Digit (DSD) 
format named by the authors and the SRT recurrence is 
performed using Decimal Carry Free (DCF) addition [26]. 
Lang and Nannarelli have offered a decimal digit recurrence 
division unit in [27] where the authors decompose the 
quotient digit into a radix 5 and a radix 2 component with 
values of radix 5 component in {-2, -1, 0, -1, 2}. Other state 
of the art proposals in literature are provided in [28] [29] [30] 
[31] [32] [33] [34] [35]. Gorgin and Jaberipur have addressed 
the important issues of storage of redundant results and 
intermixed operations in decimal arithmetic in [36]. The 
taxonomy of decimal misconceptions has been provided in 
[37].  
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Bouvier and Zimmermann have proposed a clever binary 

to decimal conversion technique void of any division in [38] 
using a sub-quadratic algorithm. This technique has been 
intelligently attended to in decimal arithmetic calculations 
performed on binary platforms and thereafter decimal 
corrected.  

A combined binary and decimal floating point divider has 
been proposed in [39] dividing decimal numbers in the 
Binary Integer Decimal (BID) format. The authors in [39] 
report that their combined BFP/BID divider design has the 
same clock period and same latency for BID division with 
respect to a standard BID divider but with an overhead of 
17% increase in area owing to a large binary multiplier in the 
normalization unit. The binary multiplier in this design can 
be doubled in other arithmetic operations, viz. addition, 
subtraction or multiplication. The state of the art decimal 
divider architecture proposals in literature utilize the Newton 
– Raphson iteration method [40] [41] [42] [43]. In the 
operation      , first an initial approximation of the 
divisor’s reciprocal is obtained;       , next ‘m’ Newton 
Raphson iterations are performed on    to obtain an 
improved approximation   . This    multiplies the 
dividend   to obtain an approximate quotient    which is 
rounded to generate the final quotient   in [40] [41]. The 
procedure in [40] and [41] demand two decimal 
multiplications for each iteration, doubling the size of the 
multiplications as each iteration quadratically increases the 
accuracy of the result. The accuracy of the initial linear 
approximation is determined by the number of Newton 
Raphson iterations which in turn is dictated by the look up 
table bucketing the slope and intercept approximations. In 
[42] and [43], the initial approximation of the reciprocal is 
obtained using a piecewise first order minimax polynomial 
[44] 

The next section presents the algorithms using the two 
Vedic sutras – Nikhilam and Paravartya, followed by the 
Vedivision algorithm of [3]. 

III. DIVISION ALGORITHMS BASED ON NIKHILAM AND 

PARAVARTYA SUTRAS, AND VEDIVISION 

This section presents the two Vedic sutras which have been 
used to design the generic algorithm Vedivision [3]. 

A. Division Algorithm using the Nikhilam Sutra 

We provide the division algorithm using the Nikhilam 
Sutra in successive steps. 

Step 1: This step divides the dividend in two parts – the 
Quotient and the Remainder; digit count of the Remainder 
equaling the digit count of the Divisor. 

Step 2: This step is Divisor Recoding which is done by 
subtracting each digit of the divisor from ‘9’ barring the last 

digit which is subtracted from ‘10’. This results in a Recoded 
Divisor as follows: 

Let 
                            
  

                                   
        

  
                                (1) 

         
          

                        (2) 

  
   

                 
          

            (3) 

Where B = Radix 
Therefore, for the given random Divisor (89998), the 

Recoded Divisor is 1 0 0 0 2. 
Step 3: In this step, the first digit of the quotient part is 

divided by the first digit of Divisor. This division is done 
having the dividend as well as the divisor as single digit 
operands which can be realized using Read Only Memory 
(ROM) or an equivalent Programmable Logic Array (PLA) 
on hardware.  

This single digit division is inevitable and can be assumed 
to be the penalty incurred for performing 16 digit operand 
divisions. The Look up Table/Read Only Memory (ROM) 
furnishes the Remainder of single digit divisions. Hence, an 
array of      cells can be used to design the Look up 
Table/Read Only Memory (ROM) treating division by 0 
differently. Treating division by 1 as special case, the array 
can be further reduced to     cells. 

Step 4: The remainder obtained in the previous step 
doubles as the Most Significant Digit (MSD) of Quotient. 
This digit is used to multiply the Recoded Divisor and the 
product is placed below the dividend after a single digit Right 
Shift (henceforth denoted as         ). The         of the 
product is followed by addition with the dividend. Addition 
operation results in the second digit of the Quotient. The 
addition can be performed using The Radix 10 Fixed Point 
Adder [45] and the multiplication can be realized using the 
Reduced Magnitude Partial Product Generator in Radix 10 
Vedic Multiplier [46] on hardware. 

Step 5: The Recoded Divisor is further multiplied by the 
single Quotient digit obtained after addition in Step 4 and the 
product is placed beneath the dividend after further        . 
Since the product in Step 4 is completely placed in 
Remainder part of Step-1, hence division concludes and all 
the intermediate results are added. 

Note: For complete illustration of the division process 
used in this sub-section, readers are directed to [3]. Division 
using Nikhilam sutra provides accurate results with High 
Magnitude Divisors (HMD) – operands proximal to powers 
of Radix 10. Division involving Low Magnitude Divisors 
(LMD) generate incorrect results on multiple occasions, 
thereby reported unreliable in [47] for Low Magnitude 
Divisors (LMD). For LMD, Paravartya Sutra is beneficial 
and reflects exact result. This procedure is mentioned in the 
next sub-section. 

B. Division Algorithm using the Paravartya Sutra 

This sutra is capable of division using any magnitude of 
divisor, albeit exhibits better performance time with lower 
magnitude divisors; divisors non-proximal to powers of 
Radix-10. This sutra can be easily explained using the 
famous Chinese Remainder Theorem [48] [49]. 

1. Given a relationship        ,   
         also holds good if       
happens to be a divisor, where E = dividend, D = 
divisor, Q = quotient and R = remainder. 

2. Now, if       is equated to zero, then the 
expression ‘E’ itself becomes the remainder R, 

and ‘p’ becomes equal to ‘x’, with a reversal in 
sign for ‘p’.  
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Hence, Paravartya sutra utilized the negation virtus of ‘p’; 

i.e. if a divisor is 112, the final Recoded Divisor is -1-1-2. 
Thereafter, the first digit of the Recoded Divisor is omitted 
and the remaining -1-2 become the new Sub Recoded 
Divisor. The following steps illustrate the process. 

Step 1: This step divides the dividend in two parts – the 
Quotient and the Remainder; digit count of the Remainder 
equaling the digit count of the Divisor. This step is similar to 
III.A.Step 1. 

Step 2: This step is Divisor Recoding. Each digit of the 
divisor is negated to form the corresponding digits of the 
Recoded Divisor. Divisor Recoding is done according to the 
following equations: 
Let                             
  

                                   
        

  
                                (4) 

         
          

                        (5) 
  

                        (6) 
Therefore, for the given random Divisor 112, the Recoded 

Divisor is -1 -1 -2. 
Step 3: This step is similar to Step 3 of Nikhilam Sutra. 

The first digit of the quotient part is divided by the first digit 
of Divisor. This division is done having the dividend as well 
as the divisor as single digit operands which can be realized 
using Read Only Memory (ROM) or an equivalent 
Programmable Logic Array (PLA) on hardware. The 
difference with Step 3 of Nikhilam Sutra is that in Paravartya 
Sutra, the digit which has been omitted from the Recoded 
Divisor is used to divide the first digit of the quotient part; 
whereas in Nikhilam Sutra, first digit of the quotient part is 
divided by the first digit of the original divisor. 

Step 4 and Step 5: These two steps are exactly similar to 
Step 4 and Step 5 of division using Nikhilam Sutra. 

Note: For complete illustration of the division process 
used in this sub-section, readers are directed to [3]. 
Vedivision eliminates  the ambiguity posted by the above 
mentioned two sutras. The next sub-section illustrates 
Vedivision. 

C. Vedivision – The Vedic Division Algorithm 

Step 1: Divisor Recoding is done in this step in such a 
manner that the magnitude of each of the digits in the 
Recoded Divisor belongs to the reduced digit set [-5, 5]. The 
recoding protocol follows both the Nikhilam and the 
Paravartya division recoding protocols. 

Divisor Recoding follows a two-step approach on divisor 
digits partitioned into two digit sets – Digit Set 1 [0, 5] 
(henceforth referred as DS1) and Digit Set 2 [6, 9] 
(henceforth referred as DS2). The divisor digits are scanned 
from Right to Left (LSD to MSD). 

1. If a digit belongs to DS1, it is negated following 
Paravartya Sutra.  

2. If a digit belongs to DS2, 10’s Complement 

(Nikhilam) of the digit is generated as the Recoded 
Divisor digit followed by an increment of the next 
Higher Significant Digit. 

Mathematically, if  
                            
  

                                   
        

  
                                (7) 

         
          

                        (8) 

  
   

               

                
             (9) 

    
      

                          (10) 
Single digit division is done ignoring the sign of the digit 

as had been done in Nikhilam and Paravartya Sutras using 
Look-up-Table/ROM. Reduced digit set Divisor Recoding 
further reduces the size of the Look-up-Table/ROM  
from       cells to      cells treating division by 0 
differently. If division by 1 is treated as special case, then the 
size of the Look-up-Table/ROM is reduced from     cells 
to     cells. Since the proposed division architecture 
operates on BCD numbers having maximum magnitude of a 
Recoded Divisor digit ‘5’, hence, only three bits are required 

to store the value of the digit. The fourth bit denotes the sign 
of the Recoded Divisor digit. Positive and negative digits 
have 0 and 1 at their MSB respectively. 

Table- I: Conversion Table for Divisor Recoding. 
Possible Divisor Digit Value Recoded Divisor Digit Value 

C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 

Decimal   
    

    
    

  Decimal   
     

     
     

   
0 0 0 0 0 0/-0 1 0 0 0 
1 0 0 0 1 -1 1 0 0 1 
2 0 0 1 0 -2 1 0 1 0 
3 0 0 1 1 -3 1 0 1 1 
4 0 1 0 0 -4 1 1 0 0 
5 0 1 0 1 -5 1 1 0 1 
6 0 1 1 0 4 0 1 0 0 
7 0 1 1 1 3 0 0 1 1 
8 1 0 0 0 2 0 0 1 0 
9 1 0 0 1 1 0 0 0 1 

      
           

      
                    (11) 

  
   

  
  

     

   
                      

   

     
   

            
                   (12) 

    
   

    
         

  
  

    
        

    
            (13) 

It may be noted that the Most Significant Digit of the 
Recoded Divisor is always a Negative Digit. 

Step 2: The       of the Dividend is divided by the 
      of the Recoded Divisor. This single digit inevitable 
division is performed using a     cell Look up Table/ROM 
as shown in Table 2. Division by ‘0’ is dealt exclusively and 

division by ‘1’ is treated as a special case. 
Table- II: (    cell) Look up Table / ROM for 

Generation of Quotient Digit 
 2 3 4 5 6 7 8 9 

2 1 1 2 2 3 3 4 4 
3 0 1 1 1 2 2 2 3 
4 0 0 1 1 1 1 2 2 
5 0 0 0 1 1 1 1 1 

For certain set of operands, clubbing of first two digits of 
the dividend are required and then the clubbed double digit is 
divided by the MSD of the Recoded Divisor to generate the 
Quotient. For such cases, Table 2 falls short and another Look 
–Up Table (LUT2) / ROM2 has been designed as shown in 
Table 3.  

Step 3: This step calls for Remainder Normalization. 
Normalization replaces a double digit number at each 
position by a single digit number. Traversal is from Least 
Significant Position to Most 
Significant Position.  

https://www.openaccess.nl/en/open-publications
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The LSD of a Multi – Digit number is retained at the 
position followed by addition of the remaining digits to the 
next HSD (Higher Significant Digit).  

IV. HARDWARE IMPLEMENTATION OF VEDIVISION 

(RADIX-10 DIVISION) 

In this section we propose the hardware implementation 
for Vedivision (Radix-10 Division)  

Fig. 1. High Level Diagram for Vedivision Hardware  

illustrated in the previous section. We first provide the 
schematic for the architecture in Figure 1, and then illustrate 
the schematic in the subsequent sub-sections. 

Table- III: Look-Up Table for Double Digit Dividend 
Divisions (LUT2/ROM2) 

 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

2
5 

2
6 

2
7 

2 5 5 6 6 7 7 8 8 9 9 0 0 0 0 0 0 0 0 

3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 

4 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 

5 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 

 
2
8 

2
9 

3
0 

3
1 

3
2 

3
3 

3
4 

3
5 

3
6 

3
7 

3
8 

3
9 

4
0 

4
1 

4
2 

4
3 

4
4 

4
5 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 7 7 7 7 8 8 8 8 9 9 9 9 0 0 0 0 0 0 

5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 

A. ODB – Original Divisor Block 

This block is mainly a 64 bit memory cell containing 
sixteen divisor digits in BCD 8421 code. Since ODB contains 
the divisor, hence this block has monitored permission for 
data storage with validity analysis of the operand. That is, 
operand value ‘0’ is blocked at the input interface itself 
elimination the error – ‘division by 0’. If the input interface 

receives a ‘0’ operand, a respective signal is sent to the error 

handler. 

B. RMDG – Reduced Magnitude Divisor Generator 

This block contains a 68 bit memory cell and results in 
Divisor Recoding. It accepts 64 bit data (16 digits) from the 
ODB block and generates the Recoded Divisor according to 
Equation (9) through Equation (12). Divisor recoding follows 
digit traversal from LSD to MSD and the recoded digits are 
generated using Table 1. 

A simple Boolean logic generates the architecture for 
implementing Table 1. Since, the input may be a maximum of 
16 digit operand, hence, this block has provision for storing 
17 recoded digits – hence the memory cell of 68 bits (each 
digit consumes 4 bits – 1 for sign and three for magnitude, 
Equation (11)-(12)). ‘n’ divisor digits produce a maximum of 
‘n+1’ Recoded Divisor digits. Moreover, the MSB of valid 
data in 68 bit memory is definitely 1, as the MSD of the 
Recoded Divisor is always a negative number. Divisors 
having digit count less than 16 are zero padded at the Higher 
Significant Positions. 

From this block itself, the iterative procedure starts. The 
divisor digits are recoded from LSD for MSD and once a digit 
is recoded it is passed to the next block (Divisor Memory 
Bank) using a four bit data bus. Division from this block 
onwards follows a pipeline. 
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C. Divisor Memory Bank 

This block contains a 68 bit memory cell for bucketing the 
17 digits fed by RMDG Block. The input digits are fed 
sequentially one at a time at MSD from the RMDG Block 
with         for every input, in parallel processing to digit 
wise recoding in RMDG Block.  

After all the Recoded Divisor digits are fed to this block, 
the Most Significant valid Digit is fed to the LUT / ROM for 
fetching the quotient values. Four single bit memory cells are 
concatenated into a 4 bit register to hold a single digit of the 
operand. Similarly explanation holds true for the Dividend 
Memory Bank. 

D. Dividend Memory Bank 

This block contains the dividend in sixteen 4 bit registers, 
having a total of 64 bit memory cell. The Most Significant 
valid Digit is fed to the LUT / ROM for fetching the quotient 
values along with that from the Divisor Memory Bank. This 
block is refreshed with a net set of data from the Right Shift 
Register Block (sub-section IV.K) after every iteration. 

E. LUT / ROM 

This stores the results for single digit divisions as 
discussed earlier and represented by Table 2 and Table 3. The 
choice for Table 2 or Table 3 depends upon the size of the 
dividend.  

The data sent from the Dividend Memory Bank is mostly 4 
bit single digit data, but for some operands, clubbing of two 
digits result in an 8 bit data being sent to the LUT / ROM. In 
such cases LUT / ROM corresponding to Table 3 is selected. 
Data is fetched from either Table 2 or Table 3 as follows: The 
Row Number represents the Divisor Digit and the Column 
Number represents the Dividend Digit.  

Hence, if the LUT / ROM are considered as an Array, then 
division generates quotient as follows: 
 

 
 
      
                    

                                          (14) 
  

 
 
      
                      

                                          (15)  
The four bit retrieved Quotient is fed to the Radix 10 Vedic 

Multiplier Block (Subsection IV.H) as well as the Vedic 
Quotient Placer Block (Subsection IV.F) 

F. Vedic Quotient Placer (VQP) 

This block is responsible for generating the final Quotient 
digit. The Quotient fetched from the LUT/ROM is added to 
the previous Quotient digit depending upon a control signal 
generated by the FDD Block (Subsection IV.L) according to 
Step 4 of the Vedic Division Algorithm (Section III). If 
addition is required, it is realized using the Radix 10 Fixed 
Point Adder [45]. 

G. Quotient Bank 

This block stores the final Quotient digit post generation 
from the VQP Block. The digit enters at the LSD position, 
and thereafter realizes           with each incoming digit 
from VQP Block on mark of a control signal from the FDD 
Block (Subsection IV.L). Actually, depending upon the 
control signal, the LSD is fed back to the VQP Block for 
addition of the present generated Quotient or shifted left by 

one digit as the new quotient digit will be placed at the LSD 
position in this block. 

H. VM Block – Radix 10 Vedic Multiplier 

Digit by Digit multiplication of the Recoded Divisor by the 
Quotient Digit from the LUT/ROM takes place in this block. 
The multiplication result is fed to the Storage Memory Block 
(Subsection IV.I) via a 4 bit bus sequentially. The 
multiplication takes place using the Reduced Magnitude 
Partial Product Generator of the Radix 10 Fixed Point Vedic 
Multiplier Architecture [46] generating valid BCD result 
digits. 

I. Storage Memory Bank 

This Block receives single digit product results from the 
VM Block. BCD Subtraction (10’s Complement Addition) 
with the respective digit of the dividend is performed and fed 
to the Vedic Normalizer Block (Subsection IV.J) in a 
pipelined fashion. 

J. Vedic Normalizer 

This block performs Normalization according to Section 
III.C. The complete Result from the Storage Memory bank is 
received in this block via 8 bit bus as the number range at 
each position belongs to [-45, 54] as follows: 

 The range of the multiplier digit is [-5, 5]. That 
states the product range as [-45, 45]. 

 Digit range of the dividend is [0, 9]. Therefore 
single digit addition of a dividend digit with product 
from VM Block has a range of [-45 ± 0, 45 ± 9] = 
[-45, 54]. 

K. Right Shift Register 

As the Vedic Normalizer Block normalizes from LSD to 
MSD, hence the lower significant digit post normalization is 
fed to this block. Therefore this block performs         with 
every digit entry. The data in this block is fed back to the 
Dividend Memory Bank (Subsection IV.D) via a write back 
operation and to the Further Divider Decider Block 
(Subsection IV.L) via write through mechanism. 

L. FDD – Further Division Decider 

The job of this block is to generate a control signal for the 
Quotient Bank and the Vedic Quotient Placer Block. The 
control signal signifies whether the present Quotient is a 
standalone Quotient digit or requires to be added to the 
previous Quotient digit to generate a valid Quotient digit. The 
control signal is of the form                   .  

The data from the Right Shift Register is compared with the 
original divisor from the Original Divisor Block using Four 
bit comparators. If the original divisor is greater than the 
incoming data from Right Shift Register, then further division 
is required. If the digit count of the normalized data from 
Right Shift Register equals the digit count of the Recoded 
Divisor, then the ADD control signal is generated otherwise 
the SHIFT control signal is generated. 
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V. PERFORMANCE ANALYSIS FOR RADIX-10 DIVISION 

HARDWARE 

We modeled the architecture presented in Figure 1 in 
Verilog at the Register Transfer Level using XC7A200T 
device (Package FBG484) of Artix7 Family. The codes were 
synthesized using the ISE Simulator of Xilinx 14.3 on a 32 bit 
machine having Intel Core i3 5005U CPU @ 2.00 GHz and 
4.00 GB RAM. Due to unavailability of the Synopsis Design 
Compiler or any ASIC Synthesis Software and relevant 
Foundary Development Kit  
(FDK) or any Process Design Kit (PDK), the Primetime Time 
Analysis could not be performed. It is assumed that the 
dedicated CMOS implementations will be much faster than 
the general purpose FPGA implementation results provided 
in this article. The FPGA Synthesis of the proposed hardware 
implementation has proven to support the Software Delay 
given in [3]. The blocks in Figure 1 were designed 
independently. The final Vedivision Hardware Architecture 
has been generated connecting the interfaces of the individual 
blocks in Figure 1. Subsection V.A provides the Time and 
Area Analysis and Subsection V.B presents the Power and 
Temperature Analysis of Radix-10 Division Hardware 
Architecture. Since, the algorithm produces varied time for 
different set of operands; hence the synthesis analysis has 
been performed for the given random set of operands. 

Operand 1: 7319842657351956 (Dividend) (Precision = 
16 Digits) 

Operand 2: 7083741825678 (Divisor) (Precision = 13 
Digits) 

A. Time and Area Analysis 

Table IV presents the Synthesis Time for the major blocks 
in Figure 1. The graphical analysis of Table 4 is presented in 
Figure 2. 

Table- IV: Time Analysis for Major Blocks in Figure 1 

Block # Block Name Delay (nS) 

1 Reduced Magnitude Divisor Generator 11.361 

2 Vedic Normalizer 65.724 

3 Ten’s Complementing Block 1.639 

4 Further Division Decider 5.524 

5 Vedic Quotient Placer 7.713 

6 Storage Memory Bank 5.133 

7 Radix 10 Vedic Multiplier 6.052 

8 Look Up Table / Read Only Memory 1.366 

9 Quotient Bank 0.280 

Table 6 presents the power and temperature analysis for 
the Vedivision Hardware. 

 
Fig. 2. Graphical Synthesis Time Analysis for Table 4 

It can be observed from Table 4 as well as Figure 2 that the 
Vedic Normalizer Block accounts for the maximum synthesis 
time as discussed earlier and hence it governs the total time 
consumption of Radix-10 Division. 

A single run for a given operand accounts for a time 
consumption of 104.792 nS (Table 4). Table 7 and Table 8 
present the FPGA and CMOS realizations for the 
state-of-the-art proposals in literature respectively. Close 
observation of the latencies reveal our design to fare better in 
peer comparison. 
Table- V: Component Utilization Summary for Radix-10 

Division 
HDL Synthesis Data 

Component # Total 

Adders/Subtractors  162 

4-bit adder                                            161  

5-bit subtractor                                       1  

Registers                                              16 

1-bit register                                         1  

128-bit register                                         2  

4-bit register                                         2  

5-bit register                                         2  

64-bit register                                         3  

7-bit register                                         1  

Comparators                                            163 

3-bit comparator greater                               16  

4-bit comparator greater                               144  

5-bit comparator equal                                 1  

5-bit comparator greater                               1  

5-bit comparator lessequal                             1  

Multiplexers                                           1038 

1-bit 2-to-1 multiplexer                               862  

128-bit 2-to-1 multiplexer                             4  

32-bit 10-to-1 multiplexer                             1  

32-bit 2-to-1 multiplexer                              17  

4-bit 2-to-1 multiplexer                               113  

5-bit 2-to-1 multiplexer                               1  

64-bit 2-to-1 multiplexer                              19  

7-bit 2-to-1 multiplexer                               5  

8-bit 2-to-1 multiplexer                               16  

Tristates                                              394 

1-bit tristate buffer 394  
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XORs                                                   2396 

1-bit xor2                                             1462  

3-bit xor2                                             387  

4-bit xor2                                             547  

 
Table- VI: Power and Temperature Analysis for 

Radix-10 Division Hardware (Figure 1) 
Time Consumption 18.00 nS 

Power Summary I (mA) 

Total Vccint 1.00 V 33 

Total Vccaux 1.80 V 20 

Total Vcco18 1.80 V 1 

Total VccBRAM 1.00 V 1 

Quiescent Vccint 1.00 V 33 

Quiescent Vccaux 1.80 V 20 

Quiescent Vcco25 1.80 V 1 

Estimated Junction Temperature 25.2° C 

Ambient Temperature 84.8° C 

Theta J – A 2.5 C/W 

Total Quiescent Power 0.073 

Total Dynamic Power 0.000 

Total Power 0.073 

VI. CONCLUSION 

In this article, we propose Radix-10 hardware architecture 
based on Vedic mathematics, the ancient mathematics 
system. The proposed architecture is based on a literary 
proposal on decimal division. Two of the Vedic sutras have 
been engineered to generate a generic algorithm which has 
been implemented on FPGA. The results reflect one process, 
named Normalization, which governs the time requirement 
for the division process on random sets of operands. One of 
the key designs in the proposal is the Reduced Magnitude 
Divisor Generator which converts the digits of the divisor 
into the set [-5, 5] so that the multiplier multiples divisors of 
value [0, 5] barring the sign. This itself reduces time 
requirement drastically. The proposed division architecture is 
void of any subtraction process and completely depends on 
addition and multiplication, thus eliminating the time 
consuming recursive subtraction process. Peer comparison 
also reflects our design to fare better than most of the literary 
counterparts. 

Comparison of time consumption of Radix-10 Division 
Architecture with Table 7 reflects that Normalization 
accounts for better performance of Radix-10 Division 
Architecture, Due to unavailability of any mathematical 
explanation for accurate pre – estimation of the number of 
Normalizations required for a particular set of operands, time 
consumption using the proposed Radix-10 Division 
Architecture does not exhibit a noted pattern. 
 

Table VII. FPGA Synthesis Analysis for Decimal Division Architectures 
Device Algorithm Precision # LUT # Slices Period Latency 
Virtex4 NR [32] 8 2008 2042 20.5 205 
Virtex4 SRT [32] 8 2612 2196 16.4 164 
Virtex6 [33] 8 1479  14.539 117 
Virtex4 A8Single, Table 4 of [42] 8 2016  3.4 173 
Virtex4 A8Single, Table 4 of [42] 8 1605  3.4 173 
Virtex4 A8Double, Table 4 of [42] 8 2224  3.4 160 
Virtex4 A8Double, Table 4 of [42] 8 1783  3.4 160 
Virtex6 A8Single, Table 6 of [42] 8 1549  2.6 135 
Virtex6 A8Single, Table 6 of [42] 8 987  2.6 135 
Virtex6 A8Double, Table 6 of [42] 8 1737  2.6 122 
Virtex6 A8Double, Table 6 of [42] 8 1166  2.6 122 
Virtex4 NR [32] 16 2974 2859 21.4 386 
Virtex4 SRT [32] 16 3799 2287 16.6 300 
Virtex6 [33] 16 2392  15.293 245 
Virtex4 A16Single, Table 6 of [42] 16 2756  3.4 401 
Virtex4 A16Single, Table 6 of [42] 16 2091  3.4 401 
Virtex4 A16Double, Table 6 of [42] 16 3768  3.4 326 
Virtex4 A16Double, Table 6 of [42] 16 2718  3.4 326 
Virtex4 NR [32] 32 4894 4503 23.9 813 
Virtex4 SRT [32] 32 6533 4385 17.5 595 
Virtex6 [33] 32 4066  15.139 485 

 
Table VIII. CMOS Cell Implementation Results for Decimal Division (precision: 16 Digits) 

Design Area Ratio Latency No. of Cycles FO4 Cycle Time Source 
[19] 22600 1.74 680.2 19 35.8 [29] 
[27] 13500 1.69 662 20 33.1 [29] 
[50]  1.59 624 48 13 [29] 
[29] 11100 0.95 371.45 19 19.55 [29] 
[29] 11130 1 391 20 19.55 [29] 

https://www.openaccess.nl/en/open-publications
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[51] 10500 1.21 472.5 21 22.5 [29] 
[27] 59700 1.57 20 20 1 [27] 
[30] 56468 1 ----- ----- 0.62 [30] 
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