
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1694

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org


Abstract: Standardization of decimal floating-point formats by

IEEE in IEEE 754-2008 Standards fuelled the interest on decimal
floating-point architectures among the global research
community. Although decimal arithmetic architecture research
attracted computer scientists for the last two decades, the major
thrust was observed past the year 2008. Multiple proposals have
been witnessed for decimal arithmetic units, mostly
adders/subtractors, and multipliers. Very few designs have been
proposed in the division domain. This article proposes decimal
division hardware based on sutras from Vedic Mathematics, the
ancient mathematics system. We present a Reduced Magnitude
Divisor Generator which converts each digit of the actual divisor
into a reduced digit set [-5, 5] using a unique
combination/modification of the Vedic Sutras. The divisor digit
magnitude reduction also minimizes the product set of
multiplication as the single-digit multiplier belongs to the reduced
digit set [0, 5] barring the sign. The sign of the dividend or the
divisor is not attended during division as a simple XOR operation
on the two signs provides the sign of the quotient. Peer
comparison has exhibited better results for our design in terms of
space and time.

Keywords: Decimal division, Vedic division, Vedic sutras,
Division architecture, Reduced Magnitude Divisor Generator,
IEEE 754-2008.

I. INTRODUCTION

Division is generally observed to be a low priority
operation with respect to its counterparts, viz. addition,
subtraction, and multiplication, by the processor designers.
Thereby chip and resource allocation get affected in addition
to development efforts. Most of the research on decimal
division has primarily focused on iterative procedures for
concise approximation of the divisor reciprocal using
Newton-Raphson or other such recurrence expressions.
Vedic mathematics provides a few sutras which deal with
division procedure either standalone or in combination with
other sutras and corollaries. The sutras generate reduced
magnitude operands and eliminate subtraction from the
whole process of division, altogether making the division
process faster. Software implementation for division using

Manuscript published on 30 September 2019
* Correspondence Author

Diganta Sengupta*, Dept. of Computer Science and Engineering,
Techno International Batanagar, Kolkata, West Bengal 700141, India,
sg.diganta@gmail.com

Mahamuda Sultana, Dept. of Information Technology, Techno
International New Town, Kolkata, West Bengal 700150, India,
sg.mahamuda@gmail.com

Atal Chaudhuri, Vice-Chancellor, Veer Surendra Sai University of
Technology, Sambalpur, Odisha 768018, India, atalc23@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Vedic sutras has been observed in [1] [2] [3] [4]. We provide
a hardware realization for the Vedivision Algorithm presented
in [3]. The algorithm is generic and consists of contribution
from two sutras from Vedic Mathematics – the Nikhilam and
the Paravartya sutras. Limitations imposed by both the
Nikhilam and the Paravartya Sutra regarding the magnitude
of the divisor compelled the design of the generic algorithm.

The rest of the paper is arranged as follows. The next
section provides the related work. Section 3 presents the two
Vedic sutras which have been used – Nikhilam and
Paravartya sutra concluding with the algorithm - Vedivision.
Section 4 presents the proposed hardware design and details.
Section 5 provides the performance analysis followed by the
conclusion.

II. RELATED WORK

Decimal division hardware inventions have mostly been
patented [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]
[17]. The decimal division is realized using Millicode
(vertical microcode) instructions as a sequence of simple
operations [6]. Millicode instructions are a special type of
instructions in IBM Power4 Systems [18]. These instructions
are dispatched in groups having a maximum of five IOPs
(internal operations). The decimal division is split into
Millicodes (smaller instructions) and the most significant
digit of the normalized divisor and the partial remainder
generates the trial quotient using digit recurrence. This trial
quotient so obtained accesses the Dividend Multiple Table
wherein trial quotient adjustments are determined using a
simple addition/subtraction. Nikmehr, Phillips, and Lim [19]
have proposed a fast decimal floating-point division based on
the high radix SRT division [20] [21] [22]. Research in [23]
and [24] also provided VLSI implementations based on SRT
digit recurrence division algorithms. Quotient Digit Selection
(QDS) [25] function complexity governs the efficiency of an
SRT divider; where the QDS function calculates a fixed
number of bits of the quotient every iteration and is
implemented using a lookup table. In [19], the partial
remainder is represented in Decimal Signed Digit (DSD)
format named by the authors and the SRT recurrence is
performed using Decimal Carry Free (DCF) addition [26].
Lang and Nannarelli have offered a decimal digit recurrence
division unit in [27] where the authors decompose the
quotient digit into a radix 5 and a radix 2 component with
values of radix 5 component in {-2, -1, 0, -1, 2}. Other state
of the art proposals in literature are provided in [28] [29] [30]
[31] [32] [33] [34] [35]. Gorgin and Jaberipur have addressed
the important issues of storage of redundant results and
intermixed operations in decimal arithmetic in [36]. The
taxonomy of decimal misconceptions has been provided in
[37].

Radix-10 Fixed Point Division Hardware

Diganta Sengupta, Mahamuda Sultana, Atal Chaudhuri

https://www.openaccess.nl/en/open-publications
mailto:atalc23@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.C4450.098319&domain=www.ijrte.org

Radix-10 Fixed Point Division Hardware

1695

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

Bouvier and Zimmermann have proposed a clever binary

to decimal conversion technique void of any division in [38]
using a sub-quadratic algorithm. This technique has been
intelligently attended to in decimal arithmetic calculations
performed on binary platforms and thereafter decimal
corrected.

A combined binary and decimal floating point divider has
been proposed in [39] dividing decimal numbers in the
Binary Integer Decimal (BID) format. The authors in [39]
report that their combined BFP/BID divider design has the
same clock period and same latency for BID division with
respect to a standard BID divider but with an overhead of
17% increase in area owing to a large binary multiplier in the
normalization unit. The binary multiplier in this design can
be doubled in other arithmetic operations, viz. addition,
subtraction or multiplication. The state of the art decimal
divider architecture proposals in literature utilize the Newton
– Raphson iteration method [40] [41] [42] [43]. In the
operation , first an initial approximation of the
divisor’s reciprocal is obtained; , next ‘m’ Newton
Raphson iterations are performed on to obtain an
improved approximation . This multiplies the
dividend to obtain an approximate quotient which is
rounded to generate the final quotient in [40] [41]. The
procedure in [40] and [41] demand two decimal
multiplications for each iteration, doubling the size of the
multiplications as each iteration quadratically increases the
accuracy of the result. The accuracy of the initial linear
approximation is determined by the number of Newton
Raphson iterations which in turn is dictated by the look up
table bucketing the slope and intercept approximations. In
[42] and [43], the initial approximation of the reciprocal is
obtained using a piecewise first order minimax polynomial
[44]

The next section presents the algorithms using the two
Vedic sutras – Nikhilam and Paravartya, followed by the
Vedivision algorithm of [3].

III. DIVISION ALGORITHMS BASED ON NIKHILAM AND

PARAVARTYA SUTRAS, AND VEDIVISION

This section presents the two Vedic sutras which have been
used to design the generic algorithm Vedivision [3].

A. Division Algorithm using the Nikhilam Sutra

We provide the division algorithm using the Nikhilam
Sutra in successive steps.

Step 1: This step divides the dividend in two parts – the
Quotient and the Remainder; digit count of the Remainder
equaling the digit count of the Divisor.

Step 2: This step is Divisor Recoding which is done by
subtracting each digit of the divisor from ‘9’ barring the last

digit which is subtracted from ‘10’. This results in a Recoded
Divisor as follows:

Let

 (1)

 (2)

 (3)

Where B = Radix
Therefore, for the given random Divisor (89998), the

Recoded Divisor is 1 0 0 0 2.
Step 3: In this step, the first digit of the quotient part is

divided by the first digit of Divisor. This division is done
having the dividend as well as the divisor as single digit
operands which can be realized using Read Only Memory
(ROM) or an equivalent Programmable Logic Array (PLA)
on hardware.

This single digit division is inevitable and can be assumed
to be the penalty incurred for performing 16 digit operand
divisions. The Look up Table/Read Only Memory (ROM)
furnishes the Remainder of single digit divisions. Hence, an
array of cells can be used to design the Look up
Table/Read Only Memory (ROM) treating division by 0
differently. Treating division by 1 as special case, the array
can be further reduced to cells.

Step 4: The remainder obtained in the previous step
doubles as the Most Significant Digit (MSD) of Quotient.
This digit is used to multiply the Recoded Divisor and the
product is placed below the dividend after a single digit Right
Shift (henceforth denoted as). The of the
product is followed by addition with the dividend. Addition
operation results in the second digit of the Quotient. The
addition can be performed using The Radix 10 Fixed Point
Adder [45] and the multiplication can be realized using the
Reduced Magnitude Partial Product Generator in Radix 10
Vedic Multiplier [46] on hardware.

Step 5: The Recoded Divisor is further multiplied by the
single Quotient digit obtained after addition in Step 4 and the
product is placed beneath the dividend after further .
Since the product in Step 4 is completely placed in
Remainder part of Step-1, hence division concludes and all
the intermediate results are added.

Note: For complete illustration of the division process
used in this sub-section, readers are directed to [3]. Division
using Nikhilam sutra provides accurate results with High
Magnitude Divisors (HMD) – operands proximal to powers
of Radix 10. Division involving Low Magnitude Divisors
(LMD) generate incorrect results on multiple occasions,
thereby reported unreliable in [47] for Low Magnitude
Divisors (LMD). For LMD, Paravartya Sutra is beneficial
and reflects exact result. This procedure is mentioned in the
next sub-section.

B. Division Algorithm using the Paravartya Sutra

This sutra is capable of division using any magnitude of
divisor, albeit exhibits better performance time with lower
magnitude divisors; divisors non-proximal to powers of
Radix-10. This sutra can be easily explained using the
famous Chinese Remainder Theorem [48] [49].

1. Given a relationship ,
 also holds good if
happens to be a divisor, where E = dividend, D =
divisor, Q = quotient and R = remainder.

2. Now, if is equated to zero, then the
expression ‘E’ itself becomes the remainder R,

and ‘p’ becomes equal to ‘x’, with a reversal in
sign for ‘p’.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1696

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

Hence, Paravartya sutra utilized the negation virtus of ‘p’;

i.e. if a divisor is 112, the final Recoded Divisor is -1-1-2.
Thereafter, the first digit of the Recoded Divisor is omitted
and the remaining -1-2 become the new Sub Recoded
Divisor. The following steps illustrate the process.

Step 1: This step divides the dividend in two parts – the
Quotient and the Remainder; digit count of the Remainder
equaling the digit count of the Divisor. This step is similar to
III.A.Step 1.

Step 2: This step is Divisor Recoding. Each digit of the
divisor is negated to form the corresponding digits of the
Recoded Divisor. Divisor Recoding is done according to the
following equations:
Let

 (4)

 (5)

 (6)
Therefore, for the given random Divisor 112, the Recoded

Divisor is -1 -1 -2.
Step 3: This step is similar to Step 3 of Nikhilam Sutra.

The first digit of the quotient part is divided by the first digit
of Divisor. This division is done having the dividend as well
as the divisor as single digit operands which can be realized
using Read Only Memory (ROM) or an equivalent
Programmable Logic Array (PLA) on hardware. The
difference with Step 3 of Nikhilam Sutra is that in Paravartya
Sutra, the digit which has been omitted from the Recoded
Divisor is used to divide the first digit of the quotient part;
whereas in Nikhilam Sutra, first digit of the quotient part is
divided by the first digit of the original divisor.

Step 4 and Step 5: These two steps are exactly similar to
Step 4 and Step 5 of division using Nikhilam Sutra.

Note: For complete illustration of the division process
used in this sub-section, readers are directed to [3].
Vedivision eliminates the ambiguity posted by the above
mentioned two sutras. The next sub-section illustrates
Vedivision.

C. Vedivision – The Vedic Division Algorithm

Step 1: Divisor Recoding is done in this step in such a
manner that the magnitude of each of the digits in the
Recoded Divisor belongs to the reduced digit set [-5, 5]. The
recoding protocol follows both the Nikhilam and the
Paravartya division recoding protocols.

Divisor Recoding follows a two-step approach on divisor
digits partitioned into two digit sets – Digit Set 1 [0, 5]
(henceforth referred as DS1) and Digit Set 2 [6, 9]
(henceforth referred as DS2). The divisor digits are scanned
from Right to Left (LSD to MSD).

1. If a digit belongs to DS1, it is negated following
Paravartya Sutra.

2. If a digit belongs to DS2, 10’s Complement

(Nikhilam) of the digit is generated as the Recoded
Divisor digit followed by an increment of the next
Higher Significant Digit.

Mathematically, if

 (7)

 (8)

 (9)

 (10)
Single digit division is done ignoring the sign of the digit

as had been done in Nikhilam and Paravartya Sutras using
Look-up-Table/ROM. Reduced digit set Divisor Recoding
further reduces the size of the Look-up-Table/ROM
from cells to cells treating division by 0
differently. If division by 1 is treated as special case, then the
size of the Look-up-Table/ROM is reduced from cells
to cells. Since the proposed division architecture
operates on BCD numbers having maximum magnitude of a
Recoded Divisor digit ‘5’, hence, only three bits are required

to store the value of the digit. The fourth bit denotes the sign
of the Recoded Divisor digit. Positive and negative digits
have 0 and 1 at their MSB respectively.

Table- I: Conversion Table for Divisor Recoding.
Possible Divisor Digit Value Recoded Divisor Digit Value

C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

Decimal

 Decimal

0 0 0 0 0 0/-0 1 0 0 0
1 0 0 0 1 -1 1 0 0 1
2 0 0 1 0 -2 1 0 1 0
3 0 0 1 1 -3 1 0 1 1
4 0 1 0 0 -4 1 1 0 0
5 0 1 0 1 -5 1 1 0 1
6 0 1 1 0 4 0 1 0 0
7 0 1 1 1 3 0 0 1 1
8 1 0 0 0 2 0 0 1 0
9 1 0 0 1 1 0 0 0 1

 (11)

 (12)

 (13)

It may be noted that the Most Significant Digit of the
Recoded Divisor is always a Negative Digit.

Step 2: The of the Dividend is divided by the
 of the Recoded Divisor. This single digit inevitable
division is performed using a cell Look up Table/ROM
as shown in Table 2. Division by ‘0’ is dealt exclusively and

division by ‘1’ is treated as a special case.
Table- II: (cell) Look up Table / ROM for

Generation of Quotient Digit
 2 3 4 5 6 7 8 9

2 1 1 2 2 3 3 4 4
3 0 1 1 1 2 2 2 3
4 0 0 1 1 1 1 2 2
5 0 0 0 1 1 1 1 1

For certain set of operands, clubbing of first two digits of
the dividend are required and then the clubbed double digit is
divided by the MSD of the Recoded Divisor to generate the
Quotient. For such cases, Table 2 falls short and another Look
–Up Table (LUT2) / ROM2 has been designed as shown in
Table 3.

Step 3: This step calls for Remainder Normalization.
Normalization replaces a double digit number at each
position by a single digit number. Traversal is from Least
Significant Position to Most
Significant Position.

https://www.openaccess.nl/en/open-publications

Radix-10 Fixed Point Division Hardware

1697

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

The LSD of a Multi – Digit number is retained at the
position followed by addition of the remaining digits to the
next HSD (Higher Significant Digit).

IV. HARDWARE IMPLEMENTATION OF VEDIVISION

(RADIX-10 DIVISION)

In this section we propose the hardware implementation
for Vedivision (Radix-10 Division)

Fig. 1. High Level Diagram for Vedivision Hardware

illustrated in the previous section. We first provide the
schematic for the architecture in Figure 1, and then illustrate
the schematic in the subsequent sub-sections.

Table- III: Look-Up Table for Double Digit Dividend
Divisions (LUT2/ROM2)

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2 5 5 6 6 7 7 8 8 9 9 0 0 0 0 0 0 0 0

3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9

4 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

5 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 7 7 7 7 8 8 8 8 9 9 9 9 0 0 0 0 0 0

5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9

A. ODB – Original Divisor Block

This block is mainly a 64 bit memory cell containing
sixteen divisor digits in BCD 8421 code. Since ODB contains
the divisor, hence this block has monitored permission for
data storage with validity analysis of the operand. That is,
operand value ‘0’ is blocked at the input interface itself
elimination the error – ‘division by 0’. If the input interface

receives a ‘0’ operand, a respective signal is sent to the error

handler.

B. RMDG – Reduced Magnitude Divisor Generator

This block contains a 68 bit memory cell and results in
Divisor Recoding. It accepts 64 bit data (16 digits) from the
ODB block and generates the Recoded Divisor according to
Equation (9) through Equation (12). Divisor recoding follows
digit traversal from LSD to MSD and the recoded digits are
generated using Table 1.

A simple Boolean logic generates the architecture for
implementing Table 1. Since, the input may be a maximum of
16 digit operand, hence, this block has provision for storing
17 recoded digits – hence the memory cell of 68 bits (each
digit consumes 4 bits – 1 for sign and three for magnitude,
Equation (11)-(12)). ‘n’ divisor digits produce a maximum of
‘n+1’ Recoded Divisor digits. Moreover, the MSB of valid
data in 68 bit memory is definitely 1, as the MSD of the
Recoded Divisor is always a negative number. Divisors
having digit count less than 16 are zero padded at the Higher
Significant Positions.

From this block itself, the iterative procedure starts. The
divisor digits are recoded from LSD for MSD and once a digit
is recoded it is passed to the next block (Divisor Memory
Bank) using a four bit data bus. Division from this block
onwards follows a pipeline.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1698

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

C. Divisor Memory Bank

This block contains a 68 bit memory cell for bucketing the
17 digits fed by RMDG Block. The input digits are fed
sequentially one at a time at MSD from the RMDG Block
with for every input, in parallel processing to digit
wise recoding in RMDG Block.

After all the Recoded Divisor digits are fed to this block,
the Most Significant valid Digit is fed to the LUT / ROM for
fetching the quotient values. Four single bit memory cells are
concatenated into a 4 bit register to hold a single digit of the
operand. Similarly explanation holds true for the Dividend
Memory Bank.

D. Dividend Memory Bank

This block contains the dividend in sixteen 4 bit registers,
having a total of 64 bit memory cell. The Most Significant
valid Digit is fed to the LUT / ROM for fetching the quotient
values along with that from the Divisor Memory Bank. This
block is refreshed with a net set of data from the Right Shift
Register Block (sub-section IV.K) after every iteration.

E. LUT / ROM

This stores the results for single digit divisions as
discussed earlier and represented by Table 2 and Table 3. The
choice for Table 2 or Table 3 depends upon the size of the
dividend.

The data sent from the Dividend Memory Bank is mostly 4
bit single digit data, but for some operands, clubbing of two
digits result in an 8 bit data being sent to the LUT / ROM. In
such cases LUT / ROM corresponding to Table 3 is selected.
Data is fetched from either Table 2 or Table 3 as follows: The
Row Number represents the Divisor Digit and the Column
Number represents the Dividend Digit.

Hence, if the LUT / ROM are considered as an Array, then
division generates quotient as follows:

 (14)

 (15)
The four bit retrieved Quotient is fed to the Radix 10 Vedic

Multiplier Block (Subsection IV.H) as well as the Vedic
Quotient Placer Block (Subsection IV.F)

F. Vedic Quotient Placer (VQP)

This block is responsible for generating the final Quotient
digit. The Quotient fetched from the LUT/ROM is added to
the previous Quotient digit depending upon a control signal
generated by the FDD Block (Subsection IV.L) according to
Step 4 of the Vedic Division Algorithm (Section III). If
addition is required, it is realized using the Radix 10 Fixed
Point Adder [45].

G. Quotient Bank

This block stores the final Quotient digit post generation
from the VQP Block. The digit enters at the LSD position,
and thereafter realizes with each incoming digit
from VQP Block on mark of a control signal from the FDD
Block (Subsection IV.L). Actually, depending upon the
control signal, the LSD is fed back to the VQP Block for
addition of the present generated Quotient or shifted left by

one digit as the new quotient digit will be placed at the LSD
position in this block.

H. VM Block – Radix 10 Vedic Multiplier

Digit by Digit multiplication of the Recoded Divisor by the
Quotient Digit from the LUT/ROM takes place in this block.
The multiplication result is fed to the Storage Memory Block
(Subsection IV.I) via a 4 bit bus sequentially. The
multiplication takes place using the Reduced Magnitude
Partial Product Generator of the Radix 10 Fixed Point Vedic
Multiplier Architecture [46] generating valid BCD result
digits.

I. Storage Memory Bank

This Block receives single digit product results from the
VM Block. BCD Subtraction (10’s Complement Addition)
with the respective digit of the dividend is performed and fed
to the Vedic Normalizer Block (Subsection IV.J) in a
pipelined fashion.

J. Vedic Normalizer

This block performs Normalization according to Section
III.C. The complete Result from the Storage Memory bank is
received in this block via 8 bit bus as the number range at
each position belongs to [-45, 54] as follows:

 The range of the multiplier digit is [-5, 5]. That
states the product range as [-45, 45].

 Digit range of the dividend is [0, 9]. Therefore
single digit addition of a dividend digit with product
from VM Block has a range of [-45 ± 0, 45 ± 9] =
[-45, 54].

K. Right Shift Register

As the Vedic Normalizer Block normalizes from LSD to
MSD, hence the lower significant digit post normalization is
fed to this block. Therefore this block performs with
every digit entry. The data in this block is fed back to the
Dividend Memory Bank (Subsection IV.D) via a write back
operation and to the Further Divider Decider Block
(Subsection IV.L) via write through mechanism.

L. FDD – Further Division Decider

The job of this block is to generate a control signal for the
Quotient Bank and the Vedic Quotient Placer Block. The
control signal signifies whether the present Quotient is a
standalone Quotient digit or requires to be added to the
previous Quotient digit to generate a valid Quotient digit. The
control signal is of the form .

The data from the Right Shift Register is compared with the
original divisor from the Original Divisor Block using Four
bit comparators. If the original divisor is greater than the
incoming data from Right Shift Register, then further division
is required. If the digit count of the normalized data from
Right Shift Register equals the digit count of the Recoded
Divisor, then the ADD control signal is generated otherwise
the SHIFT control signal is generated.

https://www.openaccess.nl/en/open-publications

Radix-10 Fixed Point Division Hardware

1699

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

V. PERFORMANCE ANALYSIS FOR RADIX-10 DIVISION

HARDWARE

We modeled the architecture presented in Figure 1 in
Verilog at the Register Transfer Level using XC7A200T
device (Package FBG484) of Artix7 Family. The codes were
synthesized using the ISE Simulator of Xilinx 14.3 on a 32 bit
machine having Intel Core i3 5005U CPU @ 2.00 GHz and
4.00 GB RAM. Due to unavailability of the Synopsis Design
Compiler or any ASIC Synthesis Software and relevant
Foundary Development Kit
(FDK) or any Process Design Kit (PDK), the Primetime Time
Analysis could not be performed. It is assumed that the
dedicated CMOS implementations will be much faster than
the general purpose FPGA implementation results provided
in this article. The FPGA Synthesis of the proposed hardware
implementation has proven to support the Software Delay
given in [3]. The blocks in Figure 1 were designed
independently. The final Vedivision Hardware Architecture
has been generated connecting the interfaces of the individual
blocks in Figure 1. Subsection V.A provides the Time and
Area Analysis and Subsection V.B presents the Power and
Temperature Analysis of Radix-10 Division Hardware
Architecture. Since, the algorithm produces varied time for
different set of operands; hence the synthesis analysis has
been performed for the given random set of operands.

Operand 1: 7319842657351956 (Dividend) (Precision =
16 Digits)

Operand 2: 7083741825678 (Divisor) (Precision = 13
Digits)

A. Time and Area Analysis

Table IV presents the Synthesis Time for the major blocks
in Figure 1. The graphical analysis of Table 4 is presented in
Figure 2.

Table- IV: Time Analysis for Major Blocks in Figure 1

Block # Block Name Delay (nS)

1 Reduced Magnitude Divisor Generator 11.361

2 Vedic Normalizer 65.724

3 Ten’s Complementing Block 1.639

4 Further Division Decider 5.524

5 Vedic Quotient Placer 7.713

6 Storage Memory Bank 5.133

7 Radix 10 Vedic Multiplier 6.052

8 Look Up Table / Read Only Memory 1.366

9 Quotient Bank 0.280

Table 6 presents the power and temperature analysis for
the Vedivision Hardware.

Fig. 2. Graphical Synthesis Time Analysis for Table 4

It can be observed from Table 4 as well as Figure 2 that the
Vedic Normalizer Block accounts for the maximum synthesis
time as discussed earlier and hence it governs the total time
consumption of Radix-10 Division.

A single run for a given operand accounts for a time
consumption of 104.792 nS (Table 4). Table 7 and Table 8
present the FPGA and CMOS realizations for the
state-of-the-art proposals in literature respectively. Close
observation of the latencies reveal our design to fare better in
peer comparison.
Table- V: Component Utilization Summary for Radix-10

Division
HDL Synthesis Data

Component # Total

Adders/Subtractors 162

4-bit adder 161

5-bit subtractor 1

Registers 16

1-bit register 1

128-bit register 2

4-bit register 2

5-bit register 2

64-bit register 3

7-bit register 1

Comparators 163

3-bit comparator greater 16

4-bit comparator greater 144

5-bit comparator equal 1

5-bit comparator greater 1

5-bit comparator lessequal 1

Multiplexers 1038

1-bit 2-to-1 multiplexer 862

128-bit 2-to-1 multiplexer 4

32-bit 10-to-1 multiplexer 1

32-bit 2-to-1 multiplexer 17

4-bit 2-to-1 multiplexer 113

5-bit 2-to-1 multiplexer 1

64-bit 2-to-1 multiplexer 19

7-bit 2-to-1 multiplexer 5

8-bit 2-to-1 multiplexer 16

Tristates 394

1-bit tristate buffer 394

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1700

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

XORs 2396

1-bit xor2 1462

3-bit xor2 387

4-bit xor2 547

Table- VI: Power and Temperature Analysis for

Radix-10 Division Hardware (Figure 1)
Time Consumption 18.00 nS

Power Summary I (mA)

Total Vccint 1.00 V 33

Total Vccaux 1.80 V 20

Total Vcco18 1.80 V 1

Total VccBRAM 1.00 V 1

Quiescent Vccint 1.00 V 33

Quiescent Vccaux 1.80 V 20

Quiescent Vcco25 1.80 V 1

Estimated Junction Temperature 25.2° C

Ambient Temperature 84.8° C

Theta J – A 2.5 C/W

Total Quiescent Power 0.073

Total Dynamic Power 0.000

Total Power 0.073

VI. CONCLUSION

In this article, we propose Radix-10 hardware architecture
based on Vedic mathematics, the ancient mathematics
system. The proposed architecture is based on a literary
proposal on decimal division. Two of the Vedic sutras have
been engineered to generate a generic algorithm which has
been implemented on FPGA. The results reflect one process,
named Normalization, which governs the time requirement
for the division process on random sets of operands. One of
the key designs in the proposal is the Reduced Magnitude
Divisor Generator which converts the digits of the divisor
into the set [-5, 5] so that the multiplier multiples divisors of
value [0, 5] barring the sign. This itself reduces time
requirement drastically. The proposed division architecture is
void of any subtraction process and completely depends on
addition and multiplication, thus eliminating the time
consuming recursive subtraction process. Peer comparison
also reflects our design to fare better than most of the literary
counterparts.

Comparison of time consumption of Radix-10 Division
Architecture with Table 7 reflects that Normalization
accounts for better performance of Radix-10 Division
Architecture, Due to unavailability of any mathematical
explanation for accurate pre – estimation of the number of
Normalizations required for a particular set of operands, time
consumption using the proposed Radix-10 Division
Architecture does not exhibit a noted pattern.

Table VII. FPGA Synthesis Analysis for Decimal Division Architectures
Device Algorithm Precision # LUT # Slices Period Latency
Virtex4 NR [32] 8 2008 2042 20.5 205
Virtex4 SRT [32] 8 2612 2196 16.4 164
Virtex6 [33] 8 1479 14.539 117
Virtex4 A8Single, Table 4 of [42] 8 2016 3.4 173
Virtex4 A8Single, Table 4 of [42] 8 1605 3.4 173
Virtex4 A8Double, Table 4 of [42] 8 2224 3.4 160
Virtex4 A8Double, Table 4 of [42] 8 1783 3.4 160
Virtex6 A8Single, Table 6 of [42] 8 1549 2.6 135
Virtex6 A8Single, Table 6 of [42] 8 987 2.6 135
Virtex6 A8Double, Table 6 of [42] 8 1737 2.6 122
Virtex6 A8Double, Table 6 of [42] 8 1166 2.6 122
Virtex4 NR [32] 16 2974 2859 21.4 386
Virtex4 SRT [32] 16 3799 2287 16.6 300
Virtex6 [33] 16 2392 15.293 245
Virtex4 A16Single, Table 6 of [42] 16 2756 3.4 401
Virtex4 A16Single, Table 6 of [42] 16 2091 3.4 401
Virtex4 A16Double, Table 6 of [42] 16 3768 3.4 326
Virtex4 A16Double, Table 6 of [42] 16 2718 3.4 326
Virtex4 NR [32] 32 4894 4503 23.9 813
Virtex4 SRT [32] 32 6533 4385 17.5 595
Virtex6 [33] 32 4066 15.139 485

Table VIII. CMOS Cell Implementation Results for Decimal Division (precision: 16 Digits)

Design Area Ratio Latency No. of Cycles FO4 Cycle Time Source
[19] 22600 1.74 680.2 19 35.8 [29]
[27] 13500 1.69 662 20 33.1 [29]
[50] 1.59 624 48 13 [29]
[29] 11100 0.95 371.45 19 19.55 [29]
[29] 11130 1 391 20 19.55 [29]

https://www.openaccess.nl/en/open-publications

Radix-10 Fixed Point Division Hardware

1701

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

[51] 10500 1.21 472.5 21 22.5 [29]
[27] 59700 1.57 20 20 1 [27]
[30] 56468 1 ----- ----- 0.62 [30]

REFERENCES

1. Diganta Sengupta and Atal Chaudhuri, "Vedic Sutras – A New Paradigm
for Optimizing Arithmetic Operations," in Handbook of Research on
Natural Computing for Optimizing Problems, J K Mandal and Somnath
Mukhopadhyay, Eds.: IGI Global, 2016, ch. 36, pp. 890-915.

2. Diganta Sengupta, Mahamuda Sultana, and Atal Chaudhuri, "A New
paradigm in Fast BCD Division Using Ancient Indian Vedic
Mathematics Sutras," in Third International Conference on Computer
Science, Engineering & Applications (ICCSEA), New Delhi, India, May
2013, pp. 11-19.

3. Diganta Sengupta, Mahamuda Sultana, and Atal Chaudhuri, "Vedivision
– A Fast BCD Division Algorithm Facilitated by Vedic Mathematics,"
International Journal of Computer Science & Information Technology
(IJCSIT), vol. 5, no. 4, pp. 67 - 80, August 2013.

4. Diganta Sengupta, Mahamuda Sultana, and Atal Chaudhuri, "An
algorithm facilitating Fast BCD Division on Low End Processors using
Ancient Indian Vedic Mathematics Sutras," in 2012 International
Conference on Communication, Devices and Intelligent Systems
(CODIS), Kolkata, India, December, 2012, pp. 373-376.

5. F Y Busaba, C A Krygowski, W H Li, E M Schwarz, and S R Carlough,
"The IBM z900 Decimal Arithmetic Unit," in Conference Record of the
Thirty-Fifth Asilomar Conference on Signals, Systems and Computers,
2001, Pacific Grove, CA, USA , 2001, pp. 1335-1339, vol 2.

6. Charles Franklin Webb and Wen He Li, "Specialized Millicode
Instructions for Packed Decimal Division," Patent 6067617, May 2000.

7. D Bolt and J Reitsma, "Coded decimal non-restoring divider," Patent US
3735108 A, May 22, 1973.

8. Akira Yamaoka, Kenichi Wada, and Kazunori Kuriyama, "Coded
decimal non-restoring divider," Patent US 4692891 A, September 8,
1987.

9. Toru Ohtsuki, Yoshio Oshima, Sako Ishikawa, and Masaharu Fukuta,
"Binary coded decimal number division apparatus," Patent US 4603397
A, July 29, 1986.

10. Davis Claud M and John A Veer De, "Divider utilizing multiples of a
divisor," Patent US 3234366 A, November 15, 1961.

11. David E Ferguson, "Non-heuristic decimal divide method and
apparatus," Patent US 5587940 A, December 24, 1996.

12. Steven R Carlough, Paulomi Kadakia, Wen H Li, and Eric M Schwarz,
"Method for performing decimal division," Patent US 8229993 B2, July
24, 2012.

13. Steven R Carlough, Paulomi Kadakia, Wen H Li, and Eric M Schwarz,
"System and method for performing decimal division ," Patent US
7519649 B2, April 14, 2009.

14. Fadi Y Busaba, Steven R Carlough, Christopher A Krygowski, and John
G Rell Jr., "Method and system for determining quotient digits for
decimal division in a superscaler processor," Patent US 7149767 B2,
December 12, 2006.

15. Freiman V Charles and Wang Chung Chian, "Division system and
method," Patent US 3591787 A, July 6, 1971.

16. Wang Liang-Kai and Schulte J Michael, "Processing unit having
decimal floating-point divider using Newton-Raphson iteration," Patent
US 7467174 B2, December 16, 2008.

17. Miu Ming-Tzer, "Preconditioned divisor for expedite division by
successive subtraction," Patent US 3578961 A, May 18, 1971.

18. J M Tendler, J S Dodson, J S Fields Jr., H Le, and B Sinharoy,
"POWER4 System Microarchitecture," IBM Journal of Research and
Development, vol. 46, no. 1, pp. 5-26, January 2002.

19. Hooman Nikmehr, Braden Phillips, and Cheng-Chew Lim, "Fast
Decimal Floating-Point Division," IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION (VLSI) SYSTEMS, vol. 14, no. 9, pp.
951-961, September 2006.

20. John Cocke and D W Sweeney, High speed arithmetic in a parallel
device. San Jose: IBM Corporation, 1957.

21. J E Robertson, "A New Class of Digital Division Methods," IRE
Transactions on Electronic Computers, vol. EC-7, no. 3, pp. 218 - 222,
September 1958.

22. K D Tocher, "Techniques of multiplication and division for automatic
binary computers," The quarterly journal of Mechanics and Applied
Mathematics, vol. 11, no. 3, pp. 364-384, 1958.

23. P Soderquist and M Leeser, "Area and Performance Tradeoffs in
Floating-point Divide and Square-root Implementations," ACM
Comput. Surv., vol. 28, no. 3, pp. 518-564, 1996.

24. Stuart Oberman, Nhon Quach, and Michael Flynn, "The Design and
Implementation of A High-Performance Floating-Point Divider,"
Stanford University, Stanford, California, Technical CSL-TR-94-599,
January, 1994.

25. S F Oberman and M J Flynn, "Division algorithms and
implementations," IEEE Transactions on Computers, vol. 48, no. 8, pp.
833-854, August 1997.

26. Hooman Nikmehr, Braden Phillips, and Cheng-Chew Lim, "A decimal
carry-free adder," in SPIE 5649, Smart Structures, Devices and Systems
II, Sydney, Australia, 2005, pp. 786-797.

27. Tomas Lang and Alberto Nannarelli, "A Radix-10 Digit-Recurrence
Division Unit:Algorithm and Architecture," IEEE TRANSACTIONS
ON COMPUTERS, vol. 56, no. 6, pp. 727-739, June 2007.

28. E Antelo, T Lang, P Montuschi, and A Nannarelli, "Digit-recurrence
dividers with reduced logical depth," IEEE Transaction On Computers,
vol. 54, no. 7, pp. 837 - 851, July 2005.

29. A Kaivani, A Hosseiny, and G Jaberipur, "Improving the speed of
decimal division," IET Computers & Digital Techniques, vol. 5, no. 5,
pp. 393-404, September 2011.

30. Amir Kaivani and Seok-Bum Ko, "Decimal Division Algorithms: The
Issue of Partial Remainders," Journal of Signal Processing Systems, vol.
73, no. 2, pp. 181-188, November 2013.

31. Tomas Lang and Alberto Nannarelli, "Comments on ‘Improving the

speed of decimal division’," IET Computers & Digital Techniques, vol.
6, no. 6, pp. 370-371, November 2012.

32. J Deschamps and G Sutter, "Decimal division: Algorithms and FPGA
implementations," in VI Southern Programmable Logic Conference
(SPL), 2010, Ipojuca, 2010, pp. 67-72.

33. M D Ercegovac and R Mcllhenny, "Design and FPGA implementation
of radix-10 combined division/square root algorithm with limited
precision primitives," in 2010 Conference Record of the Forty Fourth
Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Pacific Grove, CA, 2010, pp. 87-91.

34. Ivan D Castellanos and J E Stine, "Experiments for Decimal
Floating-Point Division by Recurrence," in Fortieth Asilomar
Conference on Signals, Systems and Computers, 2006. ACSSC '06,
Pacific Grove, CA, 2006, pp. 1716-1720.

35. T Lang and A Nannarelli, "Division Unit for Binary Integer Decimals,"
in 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, 2009. ASAP 2009., Boston, MA, 2009,
pp. 1-7.

36. Saeid Gorgin and Ghassem Jaberipur, "Fully Redundant Decimal
Arithmetic," in 2009 19th IEEE International Symposium on Computer
Arithmetic, 2009, pp. 145-152.

37. Seiji Isotani, Bruce M McLaren, and Max Altman, "Towards Intelligent
Tutoring with Erroneous Examples: A Taxonomy of Decimal
Misconceptions," in Intelligent Tutoring Systems, Vincent Aleven, Judy
Kay, and Jack Mostow, Eds. Pittsburgh, US: Springer Berlin
Heidelberg, 2010, vol. LNCS 6095, pp. 346-348.

38. Cyril Bouvier and Paul Zimmermann, "Division-Free
Binary-to-Decimal Conversion," IEEE Transactions on Computers, vol.
63, no. 8, pp. 1895-1901, August 2014.

39. S Gonzalez-Navarro, A Nannarelli, Michael J Schulte, and S Tsen, "A
combined decimal and binary floating-point divider," in 2009
Conference Record of the Forty-Third Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, 2009, pp. 930-934.

40. Liang-Kai Wang and Michael J Schulte, "Decimal floating-point
division using Newton-Raphson iteration," in 15th IEEE International
Conference on Application-Specific Systems, Architectures and
Processors, 2004. Proceedings., 2004, pp. 84-95.

41. Liang-Kai Wang and Michael J Schulte, "A Decimal Floating-Point
Divider Using Newton–Raphson Iteration," The Journal of VLSI Signal
Processing Systems for Signal, Image, and Video Technology, vol. 49,
no. 1, pp. 3-18, October 2007.

42. Mario P Vestias and Horacio C Neto, "Decimal Division Using the
Newton–Raphson Method and Radix-1000 Arithmetic," in Embedded
Systems Design with FPGAs, Peter Athanas, Dionisios Pnevmatikatos,
and Nicolas Sklavos, Eds. New York, US: Springer New York, 2013, pp.
31-54.

43. M P Vestias and H C Neto, "Revisiting the Newton-Raphson Iterative
Method for Decimal Division," in 2011 International Conference on
Field Programmable Logic and
Applications (FPL), Chania, 2011,
pp. 138-143.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1702

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4450098319/19©BEIESP
DOI:10.35940/ijrte.C4450.098319
Journal Website: www.ijrte.org

44. Jean Michel Muller, Elementary Functions : Algorithms and
Implementation, 2nd ed.: Birkhäuser Basel, 2006.

45. D Sengupta, M Sultana, and A Chaudhuri, "Proposal for Fast BCD
Addition," in Third IEEE International Conference on Research in
Computational Intelligence and Communication Networks (ICRCICN
2017), Kolkata, Communicated 2016, pp. 343-348.

46. D Sengupta, M Sultana, and A Chaudhuri, "Digit By Digit Fast Decimal
Multiplication," in INDICON 2017 (14th IEEE India Council
International Conference 2017), Roorkee, Communicated 2016.

47. Jagadguru Swami Sri Bharathi Krsna Tirathji Maharaj, Vedic
Mathematics or Sixteen Simple Sutras From The Vedas. Varanasi:
Motilal Banarsidas Publishers, 1986.

48. H Toyoshima, K Satoh, and K Ariyama, "High-speed hardware
algorithms for Chinese remainder theorem," in IEEE International
Symposium on Circuits and Systems, 1996. ISCAS '96., Connecting the
World., 1996, Atlanta, GA, 1996, pp. 265 - 268 vol.2.

49. Shuangching Chen and Shugang Wei, "A High-Speed Realization of
Chinese Remainder Theorem," in Proceedings of the 2007 WSEAS Int.
Conference on Circuits, Systems, Signal and Telecommunications, Gold
Coast, Australia, 2007.

AUTHORS PROFILE

Dr. Diganta Sengupta, B.Tech (2004) Electronics
and Instrumentation Engineering from University of
Kalyani, WB, IN. M.Tech (2010) CSE from Jadavpur
University, WB, IN. Ph.D. (2016) from Jadavpur
University, WB, IN. He is an IEEE member since
2016 and an ACM member in 2017. He is a life
member of Computer Society of India (LM’16) and

The Institution of Engineers (India) (M’16). He is
also a member of IEEE Electron Device Society.
Presently he is serving as the State Student

Coordinator for West Bengal, India for Computer Society of India.
Dr. Diganta Sengupta is presently working in the capacity of Associate
Professor in the Dept. of CSE, Techno International Batanagar, Kolkata,
India. Formerly he was associated with the School of Computer Engineering
(SCOPE), VIT University, Vellore, India.
His research interests include Decimal Numeric processors, Vedic
Mathematics, Reversible Logic, Quantum Dot Cellular Automata,
Taxonomy Generation Process and Hardware Accelerators for both classical
as well as reversible computational engines. He has served as a reviewer for
IEEE Access, JIKM (World Scientific), IJSAEM (Springer), IJBDCN
(IGI-Global), ISSE (Springer) to name a few.

Mahamuda Sultana, B.Tech (2004) Computer
Science and Engineering, University of Kalyani,
WB, IN. M.Tech (2010), Computer Science and
Engineering, Jadavpur University, WB, IN 700032.
She is currently pursuing PhD in Computer Science
and Engineering at Jadavpur University. Presently,
she is associated in the capacity of Assistant
Professor in the Dept. of Computer Science and
Engineering, Techno International New Town,

Kolkata, WB, IN 700156. She has a total of 12 years of teaching experience.
Her research interests include Reversible Logic, Computer Architecture,
Quantum Dot Cellular Automata and Vedic Mathematics.

Dr. Atal Chaudhuri received his Master of
Electronics and Telecommunication Degree with
Computer Science specialization in the year 1982 and
Doctorate of Philosophy in Engineering from
Jadavpur University, IN in 1989. Presently he is the
Vice-Chancellor of Veer Surendra Si University of
Technology (Burla University), Odisha, India.
Previously he served as a Professor in the Dept. of
Computer Science and Engineering at Jadavpur

University. He has worked in the capacity of R&D Engineer and Project
Engineer in various research projects in India and abroad. Formerly Dr. Atal
Chaudhuri was a Senior Professor in the Department of Computer Science &
Engineering of Jadavpur University, Kolkata, India. He is a Fellow at The
Institution of Engineers (India) and a Life Member of Computer Society of
India.

https://www.openaccess.nl/en/open-publications

