Optimal Load Distribution of Thermal Generating Units using Particle Swarm Optimization (PSO)

Abhinav Saxena, G.M Patil, Prashant, Parveen Poon Terang, Nirmal kumar Agarwal, Arun Rawat

Abstract: This paper shows load planning of two thermal generating units feeding a load of 200 MW using Particle swarm optimization (PSO). The PSO involves selection of population size or number of particle, fitness function. The advantages of PSO over conventional method are better and reliable solution, better convergence rate. Initially fitness function, population size corresponding to each variable are decided, thereafter PSO is used for finding most optimal solution of the generating units under different set of iteration. The performance of system using PSO is compared with conventional method in terms of the tolerance band.

Index Terms: PSO, fitness, population size, thermal.

I. INTRODUCTION

In a thermal power station, as its suggest heat or steam energy is used to generate electrical energy using inverse electromagnetic conversion. Generally, steam turbines are used to drive the synchronous generator at synchronous speed. Steam can be used after it has passed through the turbine by means of a condenser. This process of steam recycling popularly called is known as Rankine Cycle. The division of thermal power stations into various designs is done mainly on the basis of source of heat used for power generation. While fossil fuels are most commonly used, some modern thermal generating units deploy the use of nuclear and solar forms of energy for heat generation. Thermal power stations are sometimes also referred to as ‘energy centers’ because they convert heat energy into electrical energy. Thermal power stations are designed in such a way that they can also be used to generate heat energy for industrial purposes such as District Heating and Desalination of water [1]. For optimum operation of power plants, it is required to find the optimum parameter of the system with the minimum cost for maximum output ratio. This is processed to consider the financial and economic aspects of the system with different set of optimized iteration levels until desired solution is obtained. Economic Load Dispatch (ELD) is a optimized process which has been in use since the 1951s for finding the perfect operational scheme for the operation of power plants to meet the specified load requirements dynamically [2,3] and to save environment from pollution. ELD is performed by using a different number of methods such as, Fuzzy logic controller, ANN etc.

II. PARTICLE SWARM OPTIMIZATION (PSO)

Particle swarm optimization (PSO) follows the nature of colonies such as swarm of insects, flock of birds, ants, bees, etc [5,6,7,8,9]. The particle represents bee in the colony etc. which uses its own intelligence in search of target while other particles follow the path of target given by adjacent particle. Swarm represents the searching of food or target in a group. The swarm is assumed to be of specific size in a multidimensional search space [10,11,12,13,14,15,19]. Each particle has two properties: position and velocity. PSO concept was given by Kennedy and Eberhart in 1995. Each particle searches for best position and velocity in search of design space. It is given as:

\[V_i(t) = V_i(t-1) + \sum c_1 r_1 (P_{best,i} - X_i(t-1)) + \sum c_2 r_2 (G_{best} - X_i(t-1)) \]

Where: \(G_{best} \) = Global Best Position.
\(P_{best} \) = Self Best Position.
\(c_1 \) and \(c_2 \) = Acceleration Coefficients.
\(V_i(t) \) = Velocity of \(i^{th} \) of \(i^{th} \) iteration.
\(X_i(t) \) = Particle of \(i^{th} \) of \(j^{th} \) iteration.
\(j \) = Number of particle
\(i \) = iteration
\(r_1 \) and \(r_2 \) are random variables which lie between 0 and 1.

III. THERMAL GENERATING UNITS:

Fig.1 shows the structure of three thermal generating units feeding the load of 200 MW through grid connected system. The cost characteristic of thermal power plant varies quadratically with respect to generating units and can be expressed by...
Optimal Load Distribution Of Thermal Generating Units Using Particle Swarm Optimization (PSO)

\[F_i(P_i) = aP_i^2 + bP_i + c \text{ Rs/h} \] \hspace{1cm} (3)

\[P_L = \sum_{i=1}^{3} \sum_{j=1}^{3} P_i P_j B_{ij} \] \hspace{1cm} (7)

Loss coefficient for the system is

\[B_{ij} = \begin{bmatrix} 0.0025 & 0.00030 & 0.00251 \\ 0.0017 & 0.00067 & 0.00912 \\ 0.0068 & 0.0089 & 0.00792 \end{bmatrix} \]

IV. CONVENTIONAL METHOD :

In Conventional method, the economic load scheduling for equalizing incremental fuel cost is given as:

\[L_1 \frac{d(F_i(P_i))}{d(P_i)} = L_2 \frac{d(F_i(P_i))}{d(P_2)} \] \hspace{1cm} (8)

\[L_1 = \frac{1}{(1 - \frac{\partial P_L}{\partial P_1})} \] \hspace{1cm} \hspace{0.5cm} (9)

\[L_2 = \frac{1}{(1 - \frac{\partial P_L}{\partial P_2})} \] \hspace{1cm} \hspace{0.5cm} (10)

\[P_b + P_L = \sum_{i=1}^{2} P_i \] \hspace{1cm} (11)

Tolerance or converging limit

\[\varepsilon = P_b + P_L - \sum_{i=1}^{3} P_i \] \hspace{1cm} (12)

On solving Eq. (5, 6, 7, 8, 9, 10, 11), the solution obtained is:

\[P_1 = 150MW, P_2 = 63MW \]

\[P_b = 200MW, P_L = 16MW \]

From this tolerance limit from Eq. (12) is

\[\varepsilon = 3 \]

Which is quite far above the acceptable limit. The acceptable is:

\[\varepsilon \leq 0.1 \]

The calculated tolerance limit is not lying in the acceptable range.

Fig.1 Structure of 2 generating units feeding a load of 200MW

Two generating units namely \(P_1, P_2 \) are of rating 200, 150 MW respectively under the constraints as

\[5 < P_1 < 200 \]

\[4 < P_2 < 150 \]

Differentiate Eq. (1) w.r.t to \(P_1 \)

\[\frac{d(F_i(P_i))}{d(P_1)} = 2aP_1 + b \] \hspace{1cm} (4)

On solving Eq.(3) and (4) with some approximation on hit and trail method. It is easy to solve for the value of \(a, b, c \) for three generating units and it is given as

\[F_1(P_1) = 0.04P_1^2 + 1.71P_1 + 191 \] \hspace{1cm} (5)

\[F_2(P_2) = 0.05P_2^2 + 10.72P_2 + 217 \] \hspace{1cm} (6)

Transmission line losses are given by

Fig.2. Variation of cost characteristic w.r.t generating unit

\[P_1 \]

\[P_2 \]

LOAD (200 MW)

\[F_i(P_i) \]

\[P \]

\[F(P_i) \]

\[P_L \]
Fig. 3. Flowchart representing the GAs for economic scheduling for three thermal scheduling

V. APPLICATION OF PSO IN GENERATING UNITS

Let apply the concept of PSO in economic scheduling

\[F_1(P_1) = 0.04P_1^2 + 1.71P_1 + 191 \]
\[F_2(P_2) = 0.05P_2^2 + 10.72P_2 + 217 \]

5 < \(P_1 \) < 200
4 < \(P_2 \) < 150

Take 4 particles and initial population for generating units:

\[P_{1,1} = 12 \text{ MW} \]
\[P_{1,2} = 94 \text{ MW} \]
\[P_{2,1} = 18 \text{ MW} \]
\[P_{2,2} = 39 \text{ MW} \]
\[P_{2,3} = 59 \text{ MW} \]
\[P_{2,4} = 94 \text{ MW} \]

Choose \(r_1 = r_2 = 0.5 \)
\(C_1 = 0.7 \)
\(C_2 = 0.9 \)

Load demand, \(P_D = 200 \text{ MW} \)

Table 1. Generating units for initial iteration

<table>
<thead>
<tr>
<th>Population size particle</th>
<th>(P_1)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>94</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 2. Generating units for first iteration

<table>
<thead>
<tr>
<th>Population size particle</th>
<th>(P_1)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.25</td>
<td>83.5</td>
</tr>
</tbody>
</table>

Table 3: Generating units for 12\text{th} iteration

<table>
<thead>
<tr>
<th>Population size particle</th>
<th>(P_1)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>137.41</td>
<td>83.5</td>
</tr>
<tr>
<td>2</td>
<td>99.41</td>
<td>114.9</td>
</tr>
<tr>
<td>3</td>
<td>141.61</td>
<td>109.5</td>
</tr>
<tr>
<td>4</td>
<td>121.61</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Table 4: Generating units for 39\text{th} iteration

<table>
<thead>
<tr>
<th>Population size particle</th>
<th>(P_1)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>118.5</td>
<td>81.6</td>
</tr>
<tr>
<td>2</td>
<td>118.5</td>
<td>81.9</td>
</tr>
<tr>
<td>3</td>
<td>118.6</td>
<td>82.1</td>
</tr>
<tr>
<td>4</td>
<td>119.5</td>
<td>82.2</td>
</tr>
</tbody>
</table>

It is observed that generating units \(P_1, P_2 \) converges to approximately same value after the 39 iteration.

\(P_1 = 118 \text{ MW} \)
\(P_2 = 82 \text{ MW} \)

Eq. (12) shows tolerance or convergence limit under genetic algorithm for different set of iteration level(k)

At 39th iteration, some better results is obtained as shown in Fig. 5 and its tolerance or convergence limit.

\(\varepsilon^{39} = 0.00721 \)

It is lying within the acceptable limit for

Fig. 4. Regression Analysis for initial iteration
swarm optimization (PSO). Under process PSO system consisting of different generating units is converging after attaining the particular iteration. It is found that Thermal generating units gives the better output using PSO in comparison to conventional method in terms of better tolerance band. The Application of PSO makes the system more converging, reliable and efficient for selecting the different generating units to satisfy load demand of 200 MW

REFERENCES

1. Jichun Liu, Member, IEEE and Jie Li, Member, IEEE, ‘Interactive Energy-Saving Dispatch Considering Generation and Demand Side Uncertainties: A Study’, DOI 10.1109/TSG.2016.2623947, IEEE Transactions on Smart Grid, 2018

Fig. 5. Regression Analysis for 12th iteration

Fig. 6. Regression Analysis for 39th iteration

Fig.4,5,6 shows the regression analysis of 2 generating units using PSO for checking the tolerance limit. It is observed that during iteration generating units are so much diverging in nature.

As iteration level increases generating units are approaching to each other towards regression line. But at the end of 39th iteration clustering of all generating units are very close to each other as shown in Fig.6 which shows the converging nature in acceptable range.

V. CONCLUSION

This paper shows the optimum load planning of two generating units feeding load of 200 MW using particle

AUTHORS PROFILE

Abhinav Saxena received the B.Tech. Degree in Electrical Engineering from U.P.T.U Lucknow in 2011 and M.Tech from IIT Roorkee in 2013. Currently he is pursuing Ph.D. in Electrical Engineering from Jamia Millia Islamia, India. His research areas include Power Electronics, Electrical Machines, Power System, Control System and Intelligent Techniques, Renewable energy

Dr. Gurulingappa M. Patil. Bachelor of Engineering from Sri Jayachamarajendra College of Engineering Mysore in 1984. Master of Engineering from Indian Institute of Technology, Roorkee in 1990. Ph. D. from University College of Engineering, Osmania University, Hyderabad, in February, 2011. He has more than 35 research paper. His research areas are biomedical & bioinstrumentation engineering

Mr. Prashant is Ph.D scholar at Department of Electrical Engineering, Jamia Millia Islamia, New Delhi. His research area of Interest are Power System, Restructuring and Deregulation of Power System, Solar Photovoltaic Systems, Renewable Energy, & application of intelligent techniques in power system operations.

Dr. Parveen Poon Terang (MIEEE, LMISTE) graduated from NIT Silchar, Assam. Completed her M.Tech from Jamia Millia Islamia, New Delhi in Electric Power Systems Mgmt and has completed her Ph.D titled " Intelligent Strategies for Distributed Generation Interface in a Smart Grid" from Jamia Millia Islamia, New Delhi. Her research interests include power systems, distributed generation, distributed energy resources, interconnection of distributed generation systems, smart grids and microgrids.

Mr. Nirmal Agarwal is Member of IEEE currently working as a Assist. Prof. in Electrical Engg. Deptt. at JSSATE Noida (UP). He graduated in Electrical Engineering from the Rajasthan University Jaipur in 2005 (With Honours). He has done M.Tech. in Advanced Power System & Control from NIT Hamipur (HP) in 2008. He has published/presented more than 9 papers in National/International Journals / conferences of repute. His Field of interest includes Power Sector Reforms, Facts Devices, Electrical M/c and Renewable Energy Resources.

Mr. Arun Rawat completed his B.E (Electrical Engineering) from N.I.T Silchar Assam (Assam University) in 1999. He completed his M.E (Industrial System & Drives) from M.I.T.S Gwalior (R.G.P.V Bhopal) in 2003. He has more than 12 years of teaching experience out of which 9 years in J.S.S A.T.E Noida. His area of interest is power system transient stability.