
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

808

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:B11500782S619/2019©BEIESP

DOI:10.35940/ijrte.B1150.0782S619

Abstract: The trend of increasingly model size in Deep Neural

Network (DNN) algorithms boost the performance of visual

recognition tasks. These gains in performance have come at a cost

of increase in computational complexity and memory bandwidth.

Recent studies have explored the fixed-point implementation of

DNN algorithms such as AlexNet and VGG on Field

Programmable Gate Array (FPGA) to facilitate the potential of

deployment on embedded system. However, there are still lacking

research on DNN object detection algorithms on FPGA.

Consequently, we propose the implementation of Tiny-Yolo-v2 on

Cyclone V PCIe FPGA board using the High-Level Synthesis

Tool: Intel FPGA Software Development Kit (SDK) for OpenCL.

In this work, a systematic approach is proposed to convert the

floating point Tiny-Yolo-v2 algorithms into 8-bit fixed-point. Our

experiments show that the 8-bit fixed-point Tiny-Yolo-v2 have

significantly reduce the hardware consumption with only 0.3%

loss in accuracy. Finally, our implementation achieves peak

performance of 31.34 Giga Operation per Second (GOPS) and

comparable performance density of 0.28GOPs/DSP to prior works

under 120MHz working frequency.

Keywords: DNN, FPGA, Tiny-Yolo-v2, Quantization.

I. INTRODUCTION

Recent advances in deep neural networks have

substantially led to significant progress in many machine

learning problems involving object classification [1] [2] [3],

speech recognition [4] [5] [6], and object detection [7] [8] [9].

The advance of deep neural networks led to impressively high

accuracy which outperform conventional machine learning

algorithms. However, all these advances come with the cost of

increase in computational complexity and memory footprint.

The state-of-the art of modern DNN algorithms consist over

millions of weights and over billion operations to compute an

input. Consequently, it is often a challenge to implement

DNN using conventional general processing unit (Von

Neumann architecture). Today, most of the training of DNN

model are accelerated using the Graphic Processing Unit

(GPU), which is extremely power hungry, and it is often a

challenge to practice DNN for real life applications targeted

on low-power embedded system.

Revised Manuscript Received on July 22, 2019.

Yap June Wai, Center for Telecommunication Research and Innovation,

Faculty of Electronic and Computer Engineering, Universiti Teknikal

Malaysia Melaka, Melaka Malaysia. Email: junewai1993@gmail.com

Zulkalnain bin Mohd Yussof, Center for Telecommunication Research

and Innovation, Faculty of Electronic and Computer Engineering, Universiti

Teknikal Malaysia Melaka, Melaka Malaysia. Email:

zulkalnain@utem.edu.my

Sani Irwan bin Md Salim, Center for Telecommunication Research and

Innovation, Faculty of Electronic and Computer Engineering, Universiti

Teknikal Malaysia Melaka, Melaka Malaysia. Email: sani@utem.edu.my

To alleviate this problem, FPGAs have been explored

recently as an alternative solution to implement the DNN

algorithms due to their high performance, power efficiency

and reconfigurability. Prior works have shown that it is more

efficient to implement DNN algorithms in a fixed point,

which offers the advantages of reducing in power

consumption, computations load and memory bandwidth.

Prior work [10] proposed that a method to train DNN with

low precision weights and achieved a comparable accuracy as

the 32-bit model using only 4-bit. However, in this work, an

alternative approach to convert the DNN without training is

focused as it is more efficient to convert well-trained DNN

object detection model in real life deployment.

Prior works [10] [11] [12] [13] mainly focus on the

implementation of 8-bit fixed point in classification

algorithms: AlexNet and VGG which are running on

ImageNet datasets. The fixed-point representations designed

for AlexNet and VGG are not applicable in others DNN

model such as Tiny-Yolo-v2. This is due to the fixed-point

representation is dependent to the dynamic range of weights

and activations of a DNN model. In this work, the focus will

be on the implementation of fixed-point representation

designed for DNN object detection algorithms: Tiny-Yolo-v2

running on Pascal VOC 2007 [14] and COCO [15]. Prior

works [16] [17] have shown the effort on the 16-bit

fixed-point implementation of in Tiny-Yolo algorithm and

achieved less than 1% loss in accuracy. However, in this

work, the 8-bit fixed point implementation of DNN

algorithms: Tiny-Yolo-v2 is explored. The key contributions

are summarized as follows:

 A scalable FPGA accelerator to run Tiny-Yolo-v2 on

object detection datasets: Pascal VOC 2007 and

COCO.

 A systematic approach to convert the floating-point Tiny

Yolo-v2 to 8-bit fixed point model.

 An analysis on the impact of the 8-bit fixed-point

implementation of Tiny Yolo-v2 in term of hardware

resource consumption, accuracy and computation

throughput.

The rest of the paper is arranged as follows. Section II has

background on the current works on the implementation of

CNNs targeting on FPGA. Section III presents a brief

description on the proposed accelerator design using General

Matrix-Matrix Multiplication (GeMM) approach and the

proposed quantizer to convert floating-point of Tiny-Yolo-v2

to fixed-point. In section IV,

Hardware Implementation and Quantization of

Tiny-Yolo-v2 using OpenCL

Yap June Wai, Zulkalnain bin Mohd Yussof, Sani Irwan bin Md Salim

Hardware Implementation and Quantization of Tiny-Yolo-v2 Using OpenCL

809

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:B11500782S619/2019©BEIESP

DOI:10.35940/ijrte.B1150.0782S619

the experimental results discussion will be carried out to

present the utilization of hardware resource on accelerator

designed in this work. Section 4 concludes the paper.

II. BACKGROUND

A. Intel FPGA SDK for OpenCL

In fact, Intel FPGA SDK for OpenCL [18][19] is

developed to provide a high-level abstraction for FPGA

design development. It allows users to perform hardware

synthesis from high-level programming language to

Register-Transfer-Level (RTL). In the OpenCL-based FPGA

accelerator model, the Central Processing Unit (CPU) serves

as the host and it is connected to the OpenCL device, FPGA

via Peripheral Component Interconnect Express (PCIE)

interface. Eventually, this model forms a heterogeneous

computing system. The kernel written in OpenCL is compiled

into hardware image running on the FPGA. In other hand, on

the host side, a program written in C/C++ is running to

communicate with the implemented OpenCL kernel.

B. Tiny-Yolo-v2 Object Detection Algorithm

In this section, the overview of object detection model,

Tiny-Yolo-v2 is briefly discussed. Figure 1 indicates how

object detection task in Tiny-Yolo-v2 is performed as a single

regression problem straight from image pixels to bounding

box coordinates and class probability. The input image is

divided into S × S grid. Each grid cell predicts B bounding

boxes, confidence for those boxes and C class probabilities.

These predictions are encoded as an S × S × (B * 5 + C).

Unlike prior object detection algorithms which apply

classifiers at multiple location, Tiny-Yolo-v2 implements a

single convolutional network to whole input image. This

makes Tiny-Yolo-v2 is much faster than prior object

detection algorithms.

Fig. 1. Yolo Object Detection Algorithm.(adopted from [8])

C. Performance Evaluation Metrics

This section discussed about the evaluation metrices that are

used to evaluate the performance of the accelerator designed

to run Tiny-Yolo-v2 on Cyclone V PCIe board. In this

research, the computation is performed in a lower precision

(8-bit) compared to the original Tiny-Yolo-v2which is

computed in floating-point (32-bit). It is expected that the

overall accuracy performance might be affected. The

accuracy of the accelerator is evaluated in mean average

precision (mAP). In addition, to make a comprehensive

comparison on the computation throughput of proposed

accelerator running on different hardware, performance

density is used to measure the performance of proposed

design. The performance density is formulated as in (1).

Consumed_DSP

Throughput
Density.Perf

(1)

D. Related Works

Recent studies show the trend of using FPGA as an

alternative solution in hardware acceleration, where FPGA is

used to accelerate part of the computation in

compute-intensive algorithms such as DNN-based

algorithms. Zhang et al. (2015) introduced the

implementation of DNNs algorithm on FPGA using the

High-Level Synthesis (HLS) tool and it proved that the HLS

implementation can achieve comparable performance with

the traditional Register-Transfer-Level (RTL) approach.

Later implementation by Suda et al. (2016) showed a

fixed-point implementation of AlexNet and VGG on FPGA

using Intel FPGA SDK for OpenCL platform. The

implementation 8-16 fixed point design finally achieved 72.4

GOPS and 117.8 GOPs on AlexNet and VGG running on an

Intel Stratix-V GSD8 FPGA chip.

Soon, in 2017, Wang et al. (2017) implemented FPGA

accelerator, namely PipeCNN with a deeply pipelined

OpenCL kernels to fully utilize the capability of pipelining

kernel functions to minimize the memory bandwidth

requirement on two representative large-scale image

classification model, AlexNet and VGG on Stratix V A7

FPGA. It was reported that the shortest classification time

achieved to be 43 ms for AlexNet and 718ms for VGG-16.

The concept of “Performance Density” was introduced by

Wang et al. to make a better and fair comparison in the

computational throughput of the design with previous works

(Zhang et al., 2015; Suda et al., 2016).

In the other hand, Ma et al. (2017) first explored the

hardware acceleration using FPGA on DNN object detection

algorithm: Tiny Yolo. In this work, a singular value

decomposition (SVD) was proposed to reduce the number of

weights in the fully connected layers. The proposed SVD

method is proved to be an effective approach to reduce the

number of parameters in fully connected at the scale of 5.15x.

However, this technique was not applicable to the Tiny

Yolo-v2, due to the depreciated fully connected layers in the

new version of YOLO algorithm.

III. METHODOLOGY

In this section, the overview of the implementation of

GeMM based convolution will be presented. In addition, the

steps of converting the floating point Tiny-Yolo-v2 to 8-bit

fixed-point precision is also discussed in detailed.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

810

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:B11500782S619/2019©BEIESP

DOI:10.35940/ijrte.B1150.0782S619

A. Implementation of General Matrix-Matrix

Multiplication Based Convolution

As a classical DNN algorithms, Tiny-Yolo-v2 forwards the

trained model for object detection, which more than 90% of

operations are involved in convolutional layers. Noted that

the convolution operations are actually performing addition

and multiplication operations between the kernel filters and

local region of inputs. The insights of 3 dimensional

convolutions is mapped into General Matrix-Matrix

Multiplication based convolution is borrowed from previous

work to accelerate Tiny-Yolo-v2 algorithm running on

FPGA. To perform GeMM based convolution, the

convolutional layers have to be flattened and rearranged into a

2-dimensional matrix. Figure 2 shows the data rearrangement

process to flatten the first convolutional layer in

Tiny-Yolo-v2. The dimension of the input of first layer in

Tiny-Yolo-v2 is 416 × 416 × 3 (Hin × Win × Nin) and the size

of kernel is 3 × 3 (K × K). The input image is flattened and

rearranged vertically to the dimension of 416 × 416 × 3 × 3×

3.

Fig. 2. Data Rearrangement Process.

Taking advantages of the data reuse and data parallelism in

the nature of GeMM based convolution, the accelerator is

optimized by using the block tiling technique. Figure 3 shows

that instead of performing data fetching one by one, the data is

transferred to the local memory in block to reduce the latency.

After that, the computation is carried out in Single Instruction

and Multiple Data (SIMD) manner to improve the

computation throughput. Two parameters: BLOCK_SIZE

and SIMD factor are introduced in the accelerator

configuration. While the former parameter represents the size

of block of fetched data to local memory and the second

parameter decides the extent of parallelism in data level of

accelerator. By adjusting the parameters of BLOCK_SIZE

and SIMD, a scalable accelerator for Tiny-Yolo-v2

algorithms can be achieved. In this work, the best

configuration of the parameters: BLOCK_SIZE and SIMD

are 32 and 4 respectively due to the limited hardware

resources of Cyclone V PCIE Development Kit.

Fig. 3. Implementation of Block Tiling Technique.

B. Floating Point Tiny-Yolo-v2 to Fixed-Point

Conversion

The proposed steps to convert the floating-point

Tiny-Yolo-v2 to fixed-point (8-bit) are illustrated in diagram

4. Firstly, the floating-point Tiny-Yolo-v2 is forwarded using

a large set of input images. In this work, the validation image

set from Pascal VOC 2007 is used as the input to collect the

statistic of weights, biases and activations for each layer in

Tiny-Yolo-v2. The data distribution of the collected weights,

biases and activations for each layer in Tiny-Yolo-v2 are

analyzed accordingly to determine the range of data. Based on

the distribution and the data range, the fixed-point format of

weights, biases and activations are determined for each layer.

Fig. 4. Steps of converting the floating point Tiny-Yolo-v2 to

fixed-point.

The analysis shows that the data distribution and data range

vary from image to image and layer to layer, hence, in this

work, a dynamic range fixed-point quantization technique is

proposed to perform quantization on the weights, biases and

activations instead of the uniform quantizer proposed in

previous work. The formula of the proposed dynamic

quantizer is shown in equation below:

(2)

Where

Inputf = weights, biases and activations

S = Scale

bw = bit width

The proposed equation is relatively simple by introduce a

variable S where S represents a scale ratio which relatively

big to scale down the range of distribution of weights and

activations in each layer of Tiny-Yolo-v2 algorithms. The

value S is obtained based on the data collected from the

feedforward of floating point Tiny-Yolo-v2 running on Pascal

VOC 2007 validation datasets.

Forward Floating-Point

Model

Collect the statistic of

model

Determine the

fixed-point format

weight
Feature × = Output

BLOCK_SIZE
BLOCK_SIZE

Hardware Implementation and Quantization of Tiny-Yolo-v2 Using OpenCL

811

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:B11500782S619/2019©BEIESP

DOI:10.35940/ijrte.B1150.0782S619

In this work, the value of S of each layer is the mean of the

largest value of all input images in each layer of Tiny-Yolo-v2

in the validation set of Pascal VOC 2007. The equation to

obtain the value of S is illustrated as shown:

(3)

Where

n= number of input images

j = number of layers in Tiny-Yolo-v2

x = inputs in floating point

 Noted that the offset of collected data of each layer are

eliminated using the Interquartile Range (IQR) technique.

Lastly, to avoid overflow of data, saturation will be performed

to data which are out of the range that can be represented in

proposed 8-bit fixed-point format. To further optimize the

hardware resources in FPGA, the value S is round up to

nearest power of 2, which the multiplication and division

process can be carried using the bit shifting

IV. RESULT AND ANALYSIS

In this section, the hardware specification of the Cyclone V

PCIe FPGA is firstly presented in Table I. The board is

selected in this work due to its’ relatively great amount of

Logic Elements, Embedded Memory Block and the newest

version of supported OpenCL SDK.

Table- I: Hardware Specification of Cyclone V PCIe FPGA

Board

 C5P Development Kit

Logic

Element

301 K

Embedded

Memory

13,917 Kbits

Type Server Based

FPGA Cyclone V

5CGXFC9D6F27C7

N

OpenCL

SDK

version

Ver 17.1 Intel SDK

OPENCL

The hardware resources utilization of proposed

architecture on Cyclone V PCIe FPGA are summarized in

Table II. Figure 5 clearly shows that by performing 8-bit

quantization, the proposed accelerator design can achieve

115% improvement in ALUTs consumption, 34%

improvement in RAM consumption and 24% improvement in

DSP block consumption compared to the 32-bit precision

design (floating point).

Table- II: Hardware Specification of Cyclone V PCIe

FPGA Board
 ALUTs RAM DSP

32-bit 161% 70% 59%

16-bit 64% 40% 41%

8-bit 46% 36% 35%

Fig. 5. Hardware Resources Utilization of Proposed 8-bit

Fixed-Point Tiny-Yolo-v2.

The throughput of the accelerator with different parameter

configuration are also analyzed to make sure the accelerator is

scalable, so that it can be implemented in the FPGA board

with more hardware resources. The throughput of accelerator

with different BLOCK_SIZE configurations: 4, 8, 16 and 32

are shown in figure 6. The figure shows that the throughput

increases almost x2 when the parameter increases in a scale of

2. In this work, the best configuration of BLOCK_SIZE and

SIMD are 32 and 4 respectively due to the constraints in

hardware resources in Cyclone PCIE FPGA Development

Kit.

Fig. 6. Performance of Proposed 8-bit Fixed-Point

Tiny-Yolo-v2 in different BLOCK_SIZE Configuration.

In this section, the benchmarking of the hardware

implementation for Tiny-Yolo-v2 on FPGA compared to the

software implementation is presented. The designed hardware

accelerator with 8-bit fixed-point arithmetic is built on the

Cyclone V PCIE Development Kit. On the other hand, the

software implementation of Tiny-Yolo-v2 is implemented on

the Central Processing Unit (CPU): Intel ® Core TM i7-7700.

The performance is evaluated based on the Execution Time of

the algorithm, which referring the total time taken to complete

the detection on one single input image.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

812

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:B11500782S619/2019©BEIESP

DOI:10.35940/ijrte.B1150.0782S619

The execution time of between the proposed accelerator

and the work on CPU is shown in Table-III. It shows that the

proposed hardware accelerator on FPGA able to accelerate

the computation time at the scale of 6.17 times faster than the

software implementation on CPU.

Table- III: Hardware and Software Implementation
Layer CPU (Intel R Core TM

i7-7700)
FPGA (This Work)

1 0.083 0.027

2 0.123 0.018

3 0.112 0.016

4 0.094 0.017

5 0.096 0.015

6 0.098 0.016

7 0.372 0.034

8 0.381 0.068

9 0.019 0.012

Total Execution

Time (second)
1.378 0.223

In Table-IV, the work is compared to other prior works

designs. In this work, the FPGA board used: Cyclone V PCIe

which is different from the board used in previous study.

Hence, the performance of accelerator is measured using the

performance density metrices as discussed in previous

section. It is clearly shown that 8-bit implementation of

Tiny-Yolo-v2 achieved comparable performance to previous

work.

Table- IV: Comparison to Previous Work
 [11] [17] This work

Device Stratix-VGXA7 Cyclone V

PCIe

Cyclone V

PCIe

FPGA

Capacity

622k LUTs 113K LUTs 113K LUTs

Model AlexNet, VGG Tiny-Yolo-v2 Tiny-Yolo-v2

Frequency 120MHz 117MHz 120MHz

Precision Fixed (8-bit) Fixed (16-bit) Fixed (8-bit)

Throughput 117.8 GOPs 21.6GOPs 31.43GOPs

DSP

Consumed

246 122 110

Performance

Density

0.29GOPs/DSP 0.18GOPs/DS

P

0.28GOPs/DS

P

Lastly, the performance of the 8-bit implementation of

Tiny-Yolo-v2 running on Cyclone V FPGA board is also

measured in mean Average Precision (mAP). Figure 7 shows

that pictures tested by the accelerator. Despite the

computation is carried out at the lower precision (8-bit), the

accelerator still able to detect all person and motorbike

correctly. The accelerator has achieved only 0.3% loss in

mAP compared to original Tiny-Yolo-v2 while substantially

reduce a great amount of hardware resources.

Fig. 7. Tested Image.

V. CONCLUSION

In conclusion, a scalable accelerator for DNN object

detection algorithm: Tiny-Yolo-v2 is implemented on

Cyclone V PCIe FPGA board. By implementing the proposed

approach to quantize the parameters in Tiny-Yolo-v2, despite

the computations are performed in lower precision (8-bit), the

accelerator could achieve a peak throughput of 31GOPs with

only 0.3% loss in mAP under 120MHz. The performance

density of 0.28GOPs/DSP of the accelerator is comparable to

previous work.

ACKNOWLEDGMENT

Authors would like to thank the to the support from Center

for Telecommunication Research and Innovation (CeTRI)

and the support of UTeM Zamalah Scheme, Faculty of

Electronic and Computer (FKEKK), Universiti Teknikal

Malaysia Melaka.

REFERENCES

1. A. Krizhevsky, I. Sutskever and GE. Hinton, “Imagenet classification

with deep convolutional neural networks”, Advances In Neural

Information Processing Systems, 2012, pp. 1097-1105.

2. Zeiler, Matthew D., and Rob Fergus, "Visualizing and understanding

convolutional networks" In European conference on computer vision,

Springer, Cham, 2014, pp. 818-833.

3. K. Simonyan, and A.Zisserman, “Very deep convolutional networks for

large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.

4. G. Hinton, D. Li, Y. Dong, George E. Dahl, et al. "Deep neural networks

for acoustic modeling in speech recognition: The shared views of four

research groups." IEEE Signal processing magazine 29, no. 6, 2012, pp.

82-97.

5. D. Li, Geoffrey Hinton, and Brian Kingsbury. "New types of deep neural

network learning for speech recognition and related applications: An

overview." In Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference, IEEE, 2013, pp. 8599-8603.

6. A. Graves, M. Abdel-rahman, and H. Geoffrey. "Speech recognition

with deep recurrent neural networks." In Acoustics, speech and signal

processing (icassp), 2013 ieee international conference, IEEE, 2013, pp.

6645-6649.

7. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks”, Advances In Neural

Information Processing systems, 2015, pp. 91-99.

8. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection”, Proceedings of IEEE

Conference on Computer Vision and Pattern recognition, 2016, pp. 779-

788.

Hardware Implementation and Quantization of Tiny-Yolo-v2 Using OpenCL

813

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:B11500782S619/2019©BEIESP

DOI:10.35940/ijrte.B1150.0782S619

9. J. Redmon, and Farhadi, “A. YOLO9000: better, faster, stronger”,

arXiv, 2017.

10. Hubara, Itay, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. "Quantized neural networks: Training neural networks

with low precision weights and activations." The Journal of Machine

Learning Research 18, no. 1 (2017): 6869-6898.

11. N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.S.

Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA

accelerator for large-scale convolutional neural networks,” in

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, 2016, pp. 16-25.

12. J. Zhang, and J. Li, “Improving the performance of OpenCL-based fpga

accelerator for convolutional neural network”, Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, 2017, pp. 25-34.

13. Lin, Darryl, Sachin Talathi, and Sreekanth Annapureddy. "Fixed point

quantization of deep convolutional networks." In International

Conference on Machine Learning, pp. 2849-2858. 2016.

14. M. Everingham, L. Van Gool, C.K. Williams, J. Winn and A. Zisserman,

“The pascal visual object classes (voc) challenge”, International journal

of computer vision, 2010, 88(2), pp.303-338.

15. T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.

Dollár, and C.L. Zitnick, “Microsoft coco: Common objects in context”,

European conference on computer vision, Springer, 2017, pp. 740-755.

16. J. Ma, L. Chen, Gao, “Hardware Implementation and Optimization of

Tiny-YOLO Network”, International Forum on Digital TV and Wireless

Multimedia Communications, Springer, Singapore, 2017, pp. 224-234.

17. J.W. Yap, Z.M. Yussof, S.I. Salim, K.C. Lim, “Fixed Point

Implementation of Tiny-Yolo-v2 using OpenCL on FPGA”,

International Journal of Advanced Computer Science and Applications,

9(10), 2018, pp. 506-512.

18. FPGA SDK for OpenCL Programming Guide., Intel, 2017, pp. 70-80.

19. FPGA SDK for OpenCL Best Practice Guide, Intel, 2017, pp. 17-20.

AUTHORS PROFILE

Yap June Wai received his B.Eng degree in year 2017

in Electronic & Computer Engineering from University

Teknikal Malaysia Melaka. He is currently working

towards the M.S degree in science at University Teknikal

Malaysia Melaka, Malaysia. His major interests include

artificial intelligent, machine learning, and embedded

system design.

Zulkalnain bin Mohd Yussof received his Ph.D in

Electrical Engineering from Washington State University,

USA. He is working as a Professor, Center for

Telecommunication Research and Innovation, Universiti

Teknikal Malaysia Melaka. His major interests include

image/video Compression, digital system design, high-speed digital signal

processing, baseband signal processing for wireless communication system,

RF systems, and embedded system.

Sani Irwan bin Md Salim received his M.s in science

computer & Communication from Queensland

University of Technology, Australia. He is working as a

Senior Lecturer, Center for Telecommunication Research

and Innovation, Universiti Teknikal Malaysia Melaka...

