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 

Abstract: The trend of increasingly model size in Deep Neural 

Network (DNN) algorithms boost the performance of visual 

recognition tasks. These gains in performance have come at a cost 

of increase in computational complexity and memory bandwidth. 

Recent studies have explored the fixed-point implementation of 

DNN algorithms such as AlexNet and VGG on Field 

Programmable Gate Array (FPGA) to facilitate the potential of 

deployment on embedded system.  However, there are still lacking 

research on DNN object detection algorithms on FPGA. 

Consequently, we propose the implementation of Tiny-Yolo-v2 on 

Cyclone V PCIe FPGA board using the High-Level Synthesis 

Tool: Intel FPGA Software Development Kit (SDK) for OpenCL. 

In this work, a systematic approach is proposed to convert the 

floating point Tiny-Yolo-v2 algorithms into 8-bit fixed-point. Our 

experiments show that the 8-bit fixed-point Tiny-Yolo-v2 have 

significantly reduce the hardware consumption with only 0.3% 

loss in accuracy.  Finally, our implementation achieves peak 

performance of 31.34 Giga Operation per Second (GOPS) and 

comparable performance density of 0.28GOPs/DSP to prior works 

under 120MHz working frequency. 
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I. INTRODUCTION 

Recent advances in deep neural networks have 

substantially led to significant progress in many machine 

learning problems involving object classification [1] [2] [3], 

speech recognition [4] [5] [6], and object detection [7] [8] [9]. 

The advance of deep neural networks led to impressively high 

accuracy which outperform conventional machine learning 

algorithms. However, all these advances come with the cost of 

increase in computational complexity and memory footprint. 

The state-of-the art of modern DNN algorithms consist over 

millions of weights and over billion operations to compute an 

input. Consequently, it is often a challenge to implement 

DNN using conventional general processing unit (Von 

Neumann architecture). Today, most of the training of DNN 

model are accelerated using the Graphic Processing Unit 

(GPU), which is extremely power hungry, and it is often a 

challenge to practice DNN for real life applications targeted 

on low-power embedded system.  
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To alleviate this problem, FPGAs have been explored 

recently as an alternative solution to implement the DNN 

algorithms due to their high performance, power efficiency 

and reconfigurability. Prior works have shown that it is more 

efficient to implement DNN algorithms in a fixed point, 

which offers the advantages of reducing in power 

consumption, computations load and memory bandwidth. 

Prior work [10] proposed that a method to train DNN with 

low precision weights and achieved a comparable accuracy as 

the 32-bit model using only 4-bit. However, in this work, an 

alternative approach to convert the DNN without training is 

focused as it is more efficient to convert well-trained DNN 

object detection model in real life deployment.   

Prior works [10] [11] [12] [13] mainly focus on the 

implementation of 8-bit fixed point in classification 

algorithms: AlexNet and VGG which are running on 

ImageNet datasets. The fixed-point representations designed 

for AlexNet and VGG are not applicable in others DNN 

model such as Tiny-Yolo-v2. This is due to the fixed-point 

representation is dependent to the dynamic range of weights 

and activations of a DNN model. In this work, the focus will 

be on the implementation of fixed-point representation 

designed for DNN object detection algorithms: Tiny-Yolo-v2 

running on Pascal VOC 2007 [14] and COCO [15]. Prior 

works [16] [17] have shown the effort on the 16-bit 

fixed-point implementation of in Tiny-Yolo algorithm and 

achieved less than 1% loss in accuracy. However, in this 

work, the 8-bit fixed point implementation of DNN 

algorithms: Tiny-Yolo-v2 is explored. The key contributions 

are summarized as follows: 

 A scalable FPGA accelerator to run Tiny-Yolo-v2 on 

object detection datasets: Pascal VOC 2007 and 

COCO. 

 A systematic approach to convert the floating-point Tiny 

Yolo-v2 to 8-bit fixed point model.  

 An analysis on the impact of the 8-bit fixed-point 

implementation of Tiny Yolo-v2 in term of hardware 

resource consumption, accuracy and computation 

throughput. 

 

The rest of the paper is arranged as follows. Section II has 

background on the current works on the implementation of 

CNNs targeting on FPGA. Section III presents a brief 

description on the proposed accelerator design using General 

Matrix-Matrix Multiplication (GeMM) approach and the 

proposed quantizer to convert floating-point of Tiny-Yolo-v2 

to fixed-point. In section IV,  
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the experimental results discussion will be carried out to 

present the utilization of hardware resource on accelerator 

designed in this work. Section 4 concludes the paper. 

II.  BACKGROUND 

A. Intel FPGA SDK for OpenCL 

In fact, Intel FPGA SDK for OpenCL [18][19] is 

developed to provide a high-level abstraction for FPGA 

design development. It allows users to perform hardware 

synthesis from high-level programming language to 

Register-Transfer-Level (RTL). In the OpenCL-based FPGA 

accelerator model, the Central Processing Unit (CPU) serves 

as the host and it is connected to the OpenCL device, FPGA 

via Peripheral Component Interconnect Express (PCIE) 

interface. Eventually, this model forms a heterogeneous 

computing system. The kernel written in OpenCL is compiled 

into hardware image running on the FPGA. In other hand, on 

the host side, a program written in C/C++ is running to 

communicate with the implemented OpenCL kernel. 

B. Tiny-Yolo-v2 Object Detection Algorithm 

In this section, the overview of object detection model, 

Tiny-Yolo-v2 is briefly discussed.  Figure 1 indicates how 

object detection task in Tiny-Yolo-v2 is performed as a single 

regression problem straight from image pixels to bounding 

box coordinates and class probability. The input image is 

divided into S × S grid. Each grid cell predicts B bounding 

boxes, confidence for those boxes and C class probabilities. 

These predictions are encoded as an S × S × (B * 5 + C). 

Unlike prior object detection algorithms which apply 

classifiers at multiple location, Tiny-Yolo-v2 implements a 

single convolutional network to whole input image. This 

makes Tiny-Yolo-v2 is much faster than prior object 

detection algorithms. 

 

 

Fig. 1. Yolo Object Detection Algorithm.(adopted from [8]) 

C. Performance Evaluation Metrics 

This section discussed about the evaluation metrices that are 

used to evaluate the performance of the accelerator designed 

to run Tiny-Yolo-v2 on Cyclone V PCIe board. In this 

research, the computation is performed in a lower precision 

(8-bit) compared to the original Tiny-Yolo-v2which is 

computed in floating-point (32-bit). It is expected that the 

overall accuracy performance might be affected. The 

accuracy of the accelerator is evaluated in mean average 

precision (mAP). In addition, to make a comprehensive 

comparison on the computation throughput of proposed 

accelerator running on different hardware, performance 

density is used to measure the performance of proposed 

design. The performance density is formulated as in (1). 

 

Consumed_DSP

Throughput
Density.Perf   

(1) 

D. Related Works 

Recent studies show the trend of using FPGA as an 

alternative solution in hardware acceleration, where FPGA is 

used to accelerate part of the computation in 

compute-intensive algorithms such as DNN-based 

algorithms. Zhang et al. (2015) introduced the 

implementation of DNNs algorithm on FPGA using the 

High-Level Synthesis (HLS) tool and it proved that the HLS 

implementation can achieve comparable performance with 

the traditional Register-Transfer-Level (RTL) approach. 

Later implementation by Suda et al. (2016) showed a 

fixed-point implementation of AlexNet and VGG on FPGA 

using Intel FPGA SDK for OpenCL platform. The 

implementation 8-16 fixed point design finally achieved 72.4 

GOPS and 117.8 GOPs on AlexNet and VGG running on an 

Intel Stratix-V GSD8 FPGA chip.  

Soon, in 2017, Wang et al. (2017) implemented FPGA 

accelerator, namely PipeCNN with a deeply pipelined 

OpenCL kernels to fully utilize the capability of pipelining 

kernel functions to minimize the memory bandwidth 

requirement on two representative large-scale image 

classification model, AlexNet and VGG on Stratix V A7 

FPGA. It was reported that the shortest classification time 

achieved to be 43 ms for AlexNet and 718ms for VGG-16.  

The concept of “Performance Density” was introduced by 

Wang et al. to make a better and fair comparison in the 

computational throughput of the design with previous works 

(Zhang et al., 2015; Suda et al., 2016). 

In the other hand, Ma et al. (2017) first explored the 

hardware acceleration using FPGA on DNN object detection 

algorithm: Tiny Yolo. In this work, a singular value 

decomposition (SVD) was proposed to reduce the number of 

weights in the fully connected layers. The proposed SVD 

method is proved to be an effective approach to reduce the 

number of parameters in fully connected at the scale of 5.15x. 

However, this technique was not applicable to the Tiny 

Yolo-v2, due to the depreciated fully connected layers in the 

new version of YOLO algorithm. 

III. METHODOLOGY 

In this section, the overview of the implementation of 

GeMM based convolution will be presented. In addition, the 

steps of converting the floating point Tiny-Yolo-v2 to 8-bit 

fixed-point precision is also discussed in detailed. 
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A. Implementation of General Matrix-Matrix 

Multiplication Based Convolution 

As a classical DNN algorithms, Tiny-Yolo-v2 forwards the 

trained model for object detection, which more than 90% of 

operations are involved in convolutional layers. Noted that 

the convolution operations are actually performing addition 

and multiplication operations between the kernel filters and 

local region of inputs. The insights of 3 dimensional 

convolutions is mapped into General Matrix-Matrix 

Multiplication based convolution is borrowed from previous 

work to accelerate Tiny-Yolo-v2 algorithm running on 

FPGA. To perform GeMM based convolution, the 

convolutional layers have to be flattened and rearranged into a 

2-dimensional matrix. Figure 2 shows the data rearrangement 

process to flatten the first convolutional layer in 

Tiny-Yolo-v2. The dimension of the input of first layer in 

Tiny-Yolo-v2 is 416 × 416 × 3 (Hin × Win × Nin) and the size 

of kernel is 3 × 3 (K × K). The input image is flattened and 

rearranged vertically to the dimension of 416 × 416 × 3 × 3× 

3. 

 

Fig. 2. Data Rearrangement Process. 

 

Taking advantages of the data reuse and data parallelism in 

the nature of GeMM based convolution, the accelerator is 

optimized by using the block tiling technique. Figure 3 shows 

that instead of performing data fetching one by one, the data is 

transferred to the local memory in block to reduce the latency. 

After that, the computation is carried out in Single Instruction 

and Multiple Data (SIMD) manner to improve the 

computation throughput. Two parameters: BLOCK_SIZE 

and SIMD factor are introduced in the accelerator 

configuration. While the former parameter represents the size 

of block of fetched data to local memory and the second 

parameter decides the extent of parallelism in data level of 

accelerator. By adjusting the parameters of BLOCK_SIZE 

and SIMD, a scalable accelerator for Tiny-Yolo-v2 

algorithms can be achieved. In this work, the best 

configuration of the parameters: BLOCK_SIZE and SIMD 

are 32 and 4 respectively due to the limited hardware 

resources of Cyclone V PCIE Development Kit. 

 

 
 

Fig. 3. Implementation of Block Tiling Technique. 

B. Floating Point Tiny-Yolo-v2 to Fixed-Point 

Conversion 

The proposed steps to convert the floating-point 

Tiny-Yolo-v2 to fixed-point (8-bit) are illustrated in diagram 

4. Firstly, the floating-point Tiny-Yolo-v2 is forwarded using 

a large set of input images. In this work, the validation image 

set from Pascal VOC 2007 is used as the input to collect the 

statistic of weights, biases and activations for each layer in 

Tiny-Yolo-v2.  The data distribution of the collected weights, 

biases and activations for each layer in Tiny-Yolo-v2 are 

analyzed accordingly to determine the range of data. Based on 

the distribution and the data range, the fixed-point format of 

weights, biases and activations are determined for each layer. 

 

 

Fig. 4. Steps of converting the floating point Tiny-Yolo-v2 to 

fixed-point. 

The analysis shows that the data distribution and data range 

vary from image to image and layer to layer, hence, in this 

work, a dynamic range fixed-point quantization technique is 

proposed to perform quantization on the weights, biases and 

activations instead of the uniform quantizer proposed in 

previous work. The formula of the proposed dynamic 

quantizer is shown in equation below: 

 

 

(2) 

Where 

Inputf = weights, biases and activations 

S = Scale  

bw = bit width  

 

The proposed equation is relatively simple by introduce a 

variable S where S represents a scale ratio which relatively 

big to scale down the range of distribution of weights and 

activations in each layer of Tiny-Yolo-v2 algorithms. The 

value S is obtained based on the data collected from the 

feedforward of floating point Tiny-Yolo-v2 running on Pascal 

VOC 2007 validation datasets.  

 

 

Forward Floating-Point 

Model 

Collect the statistic of 

model 

Determine the 

fixed-point format 

weight
Feature × = Output 

BLOCK_SIZE 
BLOCK_SIZE 
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In this work, the value of S of each layer is the mean of the 

largest value of all input images in each layer of Tiny-Yolo-v2 

in the validation set of Pascal VOC 2007. The equation to 

obtain the value of S is illustrated as shown: 

 

 

(3) 

 

Where  

n= number of input images 

j = number of layers in Tiny-Yolo-v2 

x = inputs in floating point 

 

 Noted that the offset of collected data of each layer are 

eliminated using the Interquartile Range (IQR) technique. 

Lastly, to avoid overflow of data, saturation will be performed 

to data which are out of the range that can be represented in 

proposed 8-bit fixed-point format. To further optimize the 

hardware resources in FPGA, the value S is round up to 

nearest power of 2, which the multiplication and division 

process can be carried using the bit shifting 

 

IV. RESULT AND ANALYSIS 

In this section, the hardware specification of the Cyclone V 

PCIe FPGA is firstly presented in Table I. The board is 

selected in this work due to its’ relatively great amount of 

Logic Elements, Embedded Memory Block and the newest 

version of supported OpenCL SDK. 

 

Table- I: Hardware Specification of Cyclone V PCIe FPGA 

Board 

 
 C5P Development Kit 

Logic 

Element 

301 K 

Embedded 

Memory 

13,917 Kbits 

Type  Server Based 

FPGA Cyclone V 

5CGXFC9D6F27C7

N 

OpenCL 

SDK 

version  

Ver 17.1 Intel SDK 

OPENCL 

 

The hardware resources utilization of proposed 

architecture on Cyclone V PCIe FPGA are summarized in 

Table II. Figure 5 clearly shows that by performing 8-bit 

quantization, the proposed accelerator design can achieve 

115% improvement in ALUTs consumption, 34% 

improvement in RAM consumption and 24% improvement in 

DSP block consumption compared to the 32-bit precision 

design (floating point). 

 

Table- II: Hardware Specification of Cyclone V PCIe 

FPGA Board 
 ALUTs RAM DSP 

32-bit 161% 70% 59% 

16-bit 64% 40% 41% 

8-bit 46% 36% 35% 

 

 

 
 

Fig. 5. Hardware Resources Utilization of Proposed 8-bit 

Fixed-Point Tiny-Yolo-v2. 

The throughput of the accelerator with different parameter 

configuration are also analyzed to make sure the accelerator is 

scalable, so that it can be implemented in the FPGA board 

with more hardware resources. The throughput of accelerator 

with different BLOCK_SIZE configurations: 4, 8, 16 and 32 

are shown in figure 6. The figure shows that the throughput 

increases almost x2 when the parameter increases in a scale of 

2. In this work, the best configuration of BLOCK_SIZE and 

SIMD are 32 and 4 respectively due to the constraints in 

hardware resources in Cyclone PCIE FPGA Development 

Kit. 

 

 

Fig. 6. Performance of Proposed 8-bit Fixed-Point 

Tiny-Yolo-v2 in different BLOCK_SIZE Configuration. 

In this section, the benchmarking of the hardware 

implementation for Tiny-Yolo-v2 on FPGA compared to the 

software implementation is presented. The designed hardware 

accelerator with 8-bit fixed-point arithmetic is built on the 

Cyclone V PCIE Development Kit. On the other hand, the 

software implementation of Tiny-Yolo-v2 is implemented on 

the Central Processing Unit (CPU): Intel ® Core TM i7-7700. 

The performance is evaluated based on the Execution Time of 

the algorithm, which referring the total time taken to complete 

the detection on one single input image.  
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The execution time of between the proposed accelerator 

and the work on CPU is shown in Table-III. It shows that the 

proposed hardware accelerator on FPGA able to accelerate 

the computation time at the scale of 6.17 times faster than the 

software implementation on CPU. 

 

Table- III: Hardware and Software Implementation  
Layer CPU (Intel R Core TM 

i7-7700) 
FPGA (This Work) 

1 0.083 0.027 

2 0.123 0.018 

3 0.112 0.016 

4 0.094 0.017 

5 0.096 0.015 

6 0.098 0.016 

7 0.372 0.034 

8 0.381 0.068 

9 0.019 0.012 

Total Execution 

Time (second) 
1.378 0.223 

 

In Table-IV, the work is compared to other prior works 

designs. In this work, the FPGA board used: Cyclone V PCIe 

which is different from the board used in previous study. 

Hence, the performance of accelerator is measured using the 

performance density metrices as discussed in previous 

section. It is clearly shown that 8-bit implementation of 

Tiny-Yolo-v2 achieved comparable performance to previous 

work.  

Table- IV: Comparison to Previous Work 
 [11] [17] This work 

Device Stratix-VGXA7 Cyclone V 

PCIe 

Cyclone V 

PCIe 

FPGA 

Capacity 

622k LUTs 113K LUTs 113K LUTs 

Model AlexNet, VGG Tiny-Yolo-v2 Tiny-Yolo-v2 

Frequency 120MHz 117MHz 120MHz 

Precision Fixed (8-bit) Fixed (16-bit) Fixed (8-bit) 

Throughput 117.8 GOPs 21.6GOPs 31.43GOPs 

DSP 

Consumed 

246 122 110 

Performance 

Density 

0.29GOPs/DSP 0.18GOPs/DS

P 

0.28GOPs/DS

P 

 

Lastly, the performance of the 8-bit implementation of 

Tiny-Yolo-v2 running on Cyclone V FPGA board is also 

measured in mean Average Precision (mAP). Figure 7 shows 

that pictures tested by the accelerator. Despite the 

computation is carried out at the lower precision (8-bit), the 

accelerator still able to detect all person and motorbike 

correctly. The accelerator has achieved only 0.3% loss in 

mAP compared to original Tiny-Yolo-v2 while substantially 

reduce a great amount of hardware resources. 

 

 

Fig. 7. Tested Image. 

V. CONCLUSION 

In conclusion, a scalable accelerator for DNN object 

detection algorithm: Tiny-Yolo-v2 is implemented on 

Cyclone V PCIe FPGA board. By implementing the proposed 

approach to quantize the parameters in Tiny-Yolo-v2, despite 

the computations are performed in lower precision (8-bit), the 

accelerator could achieve a peak throughput of 31GOPs with 

only 0.3% loss in mAP under 120MHz.  The performance 

density of 0.28GOPs/DSP of the accelerator is comparable to 

previous work.  
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