
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

86

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

Abstract: In this paper, the hardware design of a low area and a

high throughput ChaCha20-Poly1305 that performs the dual

authentication-encryption function for a secured communication

within hardware devices is presented.

Cryptographic algorithms- ChaCha20 stream cipher and

Poly1305, enhance security margins and achieve higher

performance measures on a wide range of software platforms and

has proven superior to its counterpart, the AES, in the software

domain. This relatively new stream cipher is compared to the

benchmark AES, has recently been standardized but their

implementations in hardware have had very little to not very

desirable results particularly in terms of area. For this reason, it is

therefore an active field to make such algorithms hardware

friendly.

This research presents a compact, low-area and high

throughput chacha20-Poly1305 Authenticated Encryption with

Associated Data (AEAD) design. The core architecture consists of

the ChaCha20-Poly1305 algorithm. The simplified quarter round

designed in the proposed architecture uses the addition, rotation

and exclusive-or algorithms operators (gates). This proposed

architecture provides an improvement in the operating frequency

and area. The architecture was modeled and simulated with

Verilog HDL and Modelsim tools for functional and timing

correctness. The hardware architecture designed was synthesized

with Xilinxôs Synthesis Tool (XST) and Synopsisô Design

Compiler (DC) using the 0.18µm CMOS standard Cell library.

The resulting hardware area in terms of gate equivalent is

approximately 11KGE for chacha20 and 21KGE for Poly1305.

The design operates at maximum frequency of 420 MHz and 870

MHz for the ChaCha20 and Poly1305 respectively. The proposed

design presented in this paper additionally functions at a

throughput of approximately 8 Gbps for ChaCha20 with an

overall efficiency of 2.35 Kbps/GE when ChaCha20 and Poly1305

are combined into the AEAD_ChaCha20_Poly1305 authenticated

encryption core.

Keywords: ChaCha20, Poly1305, Stream Ciphers, ASIC,

FPGA

I. INTRODUCTION

The art or process of transforming messages, data or

information into forms that are unreadable by none other than

the intended recipient is what is refer to as encryption [1]. The

Revised Manuscript Received on July 22, 2019.

Guard Kanda, Dept. of Info. & Comm. Eng., Hanbat National

University, 34158 Yuseong-Gu Daejeon, South Korea. Email:

guardkanda@gmail.com

Kwangki Ryoo*, Dept. of Info. & Comm. Eng., Hanbat National

University, 34158 Yuseong-Gu Daejeon, South Korea. Email:

kkryoo@gmail.com

efficient design, hardware support and wide application of the

Advanced Encryption Standard (AES) has earned it an

enviable position in cryptography and encryption [2]. Today,

with successes chalked in cryptanalysis, weaknesses that will

be identified in this highly popular algorithm in the near future

will leave majority of the world in a not so suitable place.

Several attacks on the stream cipher behind the security of

over-the-air communication encryption in GSM, the A5/1 and

A5/2, have been successful and the National Security

Agencyôs ability to pinpoint a cellular phone and its userôs

location [3] proves how detrimental this could be should it

have fallen into the hands of adversaries. In an attempt to

prepare for such an inevitable occurrence, a multi-year project

which was dubbed, eSTREAM [4], carried out by the

European Network of Excellence for Cryptography

(ECRYPT) [5], was started in the year 2004 with the sole aim

to identify and promote compact and efficient suits of stream

ciphers having the capability of widespread adoption. Two

main profiles were used to categorize the eSTREAM

portfolio. Stream ciphers that were more suitable for software

applications and those that were suitable for hardware were

under profile 1 and profile 2 respectively. Initially, the

Salsa20 was proposed for both profile 1 and profile 2 and

made it to the second phase of the project after which it was

drop from profile 2 [6]. This only probable reason why it was

taken out was because eSTREAM felt it was too very suitable

for hardware devices with highly constrained resource. The

main bench mark that was used in measuring a ciphers

suitability for hardware was the AES. A variant of the

Salsa20, ChaCha20 which possess a much-improved design

in terms of diffusion per round [7] was introduced in 2008 by

Daniel J Bernstein. This improvement makes the ChaCha20

more resistant compared to Salsa20 [8] but still preserved or

sometimes improved its computation time per round.

Connected devices, typically known as smart devices or

Internet of Things are currently growing in terms of usage and

application. These devices usually exchange between

themselves, highly sensitive information that is either

environmentally related or socially related. Adversaries who

are potential eavesdropper or wiretappers usually take

advantage of the security challenges of these devices to get

access to sensitive information hence the information being

exchanged needs to be secured or the channel carrying the

information must be secured,

hence development and

deployment of strong and highly

High-Throughput Low-Area Hardware Design

of Authenticated Encryption with Associated

Data Cryptosystem that Uses Cha Cha20 and

Poly1305

Guard Kanda, Kwangki Ryoo

High-Throughput Low -Area Hardware Design of Authenticated Encryption with Associated Data Cryptosystem

that Uses ChaCha20 and Poly1305

87

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

efficient cryptographic

Fig. 1. Algorithm of ChaCha20 Stream Cipher

algorithms such as the ChaCha in the RFC 7539[9]

publication are highly required. The main focus of this paper

is investigating an efficient (low area, low power, high

throughput) hardware implementation of an Authenticated

Encryption with Associated Data (AEAD) cryptosystem

based on ChaCha20-Poly1305 for both FPGA and ASIC.

Fig. 2. Graphical Representation of Matrix Manipulation

Algorithm

The remainder of this paper is segmented as follows:

Section 2 introduces the ChaCha20 algorithm and its

constituents, Section 3 describes the Poly1305 authenticator

and its mode of operation. In section 4, the proposed hardware

architectures for the ChaCha20 and the Poly1305 examined

during the research are presented. Simulation and synthesis

results of the hardware architectures are in section 5. Finally

in section 6, the conclusion, future plan and direction of this

research works is presented.

II. CHACHA20 ALGORITHM

The ChaCha20 algorithm, shown in Fig. 1, is mainly

composed of the main core round algorithm, known as the

Quarter-Round operation seen in Fig. 2. This algorithm works

on a 4-by-4 matrix of 32-bits each shown in Fig. 3, resulting in

a total of 512-bit data. The upper-left of the matrix is marked

index-0 and the bottom right marked index-15. The

ChaCha20 as can be deduced from the name required a total

of 20 rounds to obtain the final keystream used to create the

stream cipher. The rounds are executed as column and

diagonal rounds alternatively.

 m = m+ n

p = p ᷈ m

p = p ậ 16
(1)

o = o + p

n = n ᷈ o

n = n ậ 12

(2)

m = m + n

p = p ᷈ m

p = p ậ 8

(3)

o = o + p

n = n ᷈ o

n = n ậ 7
(4)

Typically, four columns Quarter-Round and four diagonal

Quarter-Rounds shown in Fig. 4, are combined to form a

Double-Round operation. For this reason, each of the four

rounds: diagonal or column, is termed a quarter (one-fourth)

of the Single-Round. To perform a complete Double-Round

computation, a total of 20 rounds is required. The

computation performed with the Quarter-Round will then

require a total of 80 rounds to be executed. The main binary

operators employed in this algorithm are the addition modulo

232, exclusive-OR (XOR) and binary rotation operations.

This is typically referred to as the ARX as shown in Fig. 1.

Fig. 3 shows the initial setup of the state matrix. The head or

top row of the matrix is occupied by four 32-bit constants,

resulting in a 128-bit long of constant values 0x61707865,

0x3320646e, 0x79622d32, 0x6b206574. This constant value

which translates into ñexpand 32-byte kò. The constant value

is designed to reduce the amount of data an attacker can

control. The initial state matrix setup has the mid-section (half

of the size) of the state matrix being filled by the encryption

key, a total of 256 bit.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

88

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

C1C0 C2 C3

K1K0 K2 K3

K5K4 K6 K7

N0E N1 N2

128-bit Constants

256-bit Key

96-bit Nonce32-bit Block-count
Fig. 3. Initial State Matrix Setup for the ChaCha20 Stream

Cipher

Then follows a 32-bit block counter. The block counter that

is used to distinguish each 64-byte (512-bit) block of data that

is encrypted. This effectively means that the ChaCha20 can

encrypt data in excess of 256 gigabytes with the same key.

The nonce which is the last 64 bits of the state matrix block

is a unique number that is used to encrypt each block. That is,

the nonce should not be repeated for the same key. In other

words, the nonce and the counter can be combined to form the

same purpose. This means that effectively a 96-bit nonce to

encrypt a 256- gigabyte of data.

III. POLY1305 ALGORITHM

Poly1305 is a Message Authentication Code (MAC) that is

also used in cryptography to provide authenticity of an

encrypted message. The Poly1305 MAC algorithm shown in

Fig. 5 was also design and created by Daniel J Bernstein [10].

It verifies how authentic a message is and its integrity as well.

A MAC is examined first during a communication between

two parties. If the MAC a receiver computed is not same as

what which was received from the sender, the sent message

has probably been altered and hence the integrity and

authenticity of any data or message (Information) can be

evaluated using the MAC. Poly1305 together with the

ChaCha20 has been standardized in the RFC 7539 [9]. The

initial proposal was the Poly1305-AES. This design based its

key expansion on the AES block cipher algorithm and hence

its name then.

Fig. 4. Column and Diagonal Matrix setup used in

Computing Rounds in ChaCha20

 It used a 128-bit AES key, an additional 128-bit key) and

a nonce of 128-bit, to compute 128-bit authentication Tag off

a message of variable length. The variable length message is

chopped into 128-bit block chunks which becomes the

polynomial coefficient that is evaluated modulo a prime

number 2
130

-5. The name Poly1305 is derived from the use of

the 2[
130

-5], the prime number that is used in performing the

modulus arithmetic.

 Current use of the Poly1305, in NaCl [11] is with the

Salsa20 rather than the AES. Transport Layer Security (TLS)

the successor to the Secure Shell (SSH) protocol,

implemented the authenticated encryption protocol based on

the ChaCha20 algorithm. Current implementations of the

ChaCha20-Poly1305 are its use by Google in securing

(TLS/SSL) connection between the Chrome browsers on

Android phones and Googleôs servers [12].

IV. HARDWARE ARCHITECTURE AND

IMPLEMENTATION

The two architectures evaluated in this research are based

on the primitives ChaCha20 and Poly1305. The Hardware

Implementation of these algorithm focuses on improving

these two core algorithms in term of area, speed and

throughput. The ChaCha20 operates by generating a

keystream which is the result obtained after adding the

initially constructed state matrix to the resulting matrix after

the rounds of computation, 20 for the 4xQR architecture and

80 for the 1xQR architecture for this research. This keystream

is then combined with the plaintext to be produced the

ciphertext. The core of the ChaCha20ôs computation is the

quarter round computation. This particular structure can be

implemented in several ways. Examination of the design in

both pipeline and parallel architectures were examined.

Designs using the pipeline approach reported a larger

hardware area while improving operating frequency

drastically. This is due to the reduction in the critical path of

the architecture.

Fig. 5. Algorithm of ChaCha20 Based Poly1305

Authenticator

For the parallel architecture examined, the design resulted

in a smaller hardware area in terms of gate count or gate

equivalent with a significantly reduced operating frequency.

High-Throughput Low -Area Hardware Design of Authenticated Encryption with Associated Data Cryptosystem

that Uses ChaCha20 and Poly1305

89

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

The scalability of this Quarter-Round implies that the

hardware design can be divided into simpler computation

steps which will allow for design trade-off between area and

speed.

A. QuaterRound_8 Architecture

The basic implementation of the quarter round computation

is shown in the algorithm in Fig. 6. The basic unit of this

computation has the structure of the function defined in (5).

The four particular matrix locations to be affected by the

diffusion expression in (1) to (4) which forms the

Quarter-Round, is passed to the function as shown in (5). The

resulting values after the Quarter-Roundôs computation now

becomes the updated values in their respective matrix

indexes, ready for the next round of computation. For the

design presented in this work, the initial state matrix or vector

is built by the concatenation of all the 16 individual bytes

labelled in Fig. 3 into a 512-bit long value.

The ChaCha20_State_Generator block is houses the 4xQR

and the 1xQR architectures. The initial setup values of the

State Matrix are retained in the init_state_matrix register. For

each Single-Round, computations update 16 unique location

of the state matrix or vector. For this reason, all four of the

column rounds are can be executed in parallel. This implies

that a column or diagonal Single-Round computation can

occur in a single clock cycle. With the 4xQR architecture

which is a Single Round in effect, will require 2 clock cycles

for one Double-Round (a combination of 4 column and 4

diagonal Quarter-Rounds).

quarterround(index[a],index[b],index[c],index[d]) (5)

chaCha20_Enc

strb_en

Key[255:0]

Nonce[95:0]

Block_count[31:0]

Plain_txt[511:0]

Little
Endian

serializer

clk

resetb

init ChaCha20 State
Generator

Controller

Ib
_

d
o
n
e

S
tr
b

_
e

n

m
n
o
p

Init_matrix

Column_
diagonal_

FSM

Init_matrix

Quarter
Round(QR)

qr_done

mrow, nrow, orow, prow RAM

quarterRound_4

Quarter
Round(QR)

Quarter
Round(QR)

Quarter
Round(QR)

Init_state_matrix

final_matrix

init_matrix

keystream

Fig. 6. Hardware Block Diagram for the ChaCha20 4xQR

Architecture

This architecture greatly improves the time required to

complete the computation from 80 clocks without using the

parallel architecture to 20 when the parallel architecture is

implemented. Multiplexers and demultiplexer are used for the

purposes of routing the appropriate vector or matrix index

values to be used for the computation. The is achieved

through a Controller logic (FSM) to schedule the in and out of

data from the Quarter-Round computation A carry-less

addition of the final_state_matrix and the init_state_matrix

is performed to obtain the keystream after the roundôs

computation. This addition is easily implemented by multiple

32-bit additions and then a final concatenation of the result.

This does not influence frequency. Likewise, the cyclic

rotational shift is implemented with a straightforward

reconstruction by part-selection of the value into a new result.

B. Poly1305 Architecture

Poly1305 module takes as input, 256-bit key, and an

arbitrary length message. The 256-bit key to this module is

partitioned into two equal halves as can be seen from the

algorithm in Fig. 5. The lower half of the key is assigned to the

variable órô and the upper half is assigned to the ósô variable.

The value of órô is clamped. The matrix for the clamping is

shown in (6). Each vector location is an 8-bit value occupying

16 indexes to result in a total of 128 bits, the size of órô. The

upper left corner is indexed 15 and the lower right corner is

indexed 0. The terms OC represents Odd Clamp which is

performed to clear the top four bits of that particular vector or

matrix index to a value zero. The NC - No Clamp, represents

the areas of the órô vector that is not affected by the clamp. The

final term which is the EC represents Even Clamp. The Even

Clamp is performed to clear the bottom two bits of the value at

that vector index or location. This clearing will make the

value evenly divisible by 4. Equation (6) indicates that, r[3] ,

r[7] , r[11] and r[15] fall under the Odd Clamp, the r[4] , r[8] ,

r[12] fall under the Even Clamp. To perform the clamp, A

straightforward bitwise AND is performed on the vector r

with the value 128-bit 0x0ffffffc0ffffffc0ffffffc0ffffff .

 (6)

The value of the prime number (P) used to perform the

modulo 2
P
 arithmetic can be computed directly by performing

a left shift of 130 on the value 1, and then subtracting 5 from

the resulting value as shown in (7). This result is the 131-bit

long hexadecimal number: 0x3fffffffffffffffffffffffffffff ffb.

P = (1 << 130) -5 (7)

block=(0x01Ḻ(BL*3)) || serialized_message [127:0] (8)

The message is processed in 16-byte chunks. A sub-module

is designed to determine the number of 16-bytes to be

processed. This sub module only uses left shift and OR gates

to compute the number of times the modulo arithmetic will be

executed. The message processing is done from the least

128-bit through to the highest bit. A signal short is asserted if

the message is not an evenly divisible 16-byte long message.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

90

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

The short signal is required to enable the right data

formatting and construction. A binary shift register is used to

perform the block chucks.

 A 128-bit right shift is performed after every round of the

modulo computation. Prior to the message being processed

for the modulo computation,16-byte long message chunks are

serialized to little endian. The result is padded with the

hexadecimal value 0x01. A register named block of size

131-bit is used to keep the value of the chuck blocks after

every 16-byte block is computed. An accumulator register

named ñaccumò is used to accumulate the result from each

16-byte computation. The initial value of accum before

computation begins is 0. The resulting accum is multiplied by

the ósô value (one half of the input key mentioned earlier) and

reduced by modulo 2
P
.

 This is performed iteratively for the number of even

16-byte messages that can be obtained from the

arbitrary-length message. In the event that a short signal is

asserted, a final round of iteration is again computed but for

this computation, the block value that is generated does get to

be serialized as the remaining message is not a 16-bytes long.

The appended bit is easily performed with the expression

shown in (8). This expression can easily be achieved with

logical-OR and left shift operators performed on a 131-bit

resulting register. The BL term in (8) represents the

byte-length register typically holding the byte-length of the

remaining message to be after the number of block chucks

have been determined. By default, this value is a constant 16

until a short signal selects the remaining byte-length for the

additional final round of computation when asserted. A

simple and straightforward method of computing A = B.C

mod R where R is a k-bit natural is by multiplying B by C to

obtain a 2k-bit product term and then reducing the product

term modulo R. The main architectures used to perform the

modulo reduction (mod (2
130

-5)) computation is the

Double-Add-Reduce (DAR) algorithm whose architecture is

shown in Fig. 8 and the DAR with the carry-stored encoding

(CSA) [13]. To perform the DAR computation, a modulo

arithmetic needs to performed the addition and doubling.

Fig. 7. Block Diagram of Proposed Poly1305 Architecture

Fig. 8. Block Diagram of the Double, Add and Reduce

Multiplier implemented in Poly1305_DAR

Fig. 9. Block Diagram of Proposed Poly1305 Architecture

The multiplicand term is scanned from left to right. If a bit

ñ1ò is encountered through the iteration, we perform both the

double the multiplicand and add the result to the product but

only perform the doubling of the multiplicand in all other

cases without the addition.The architecture shown in Fig. 9,

represents the modular addition computation implemented in

this design. These algorithms perform the modulo

computation alongside an FSM (controller), multiplexors and

demultiplexers to form the poly1305 architecture shown in

Fig. 7. The two architectures examined in this design was the

DAR modulo computation algorithm and a version of that,

Double-Add-Reduce algorithm that uses the

Carry-Save-Adder (CSA) to speed up the computation. The

two designs investigated show that the DAR, occupied a

smaller area as most of the circuit components were

combinational circuits. This resulted in a very small hardware

area while incasing the critical path of the design and hence

affecting the execution time and operating frequency of the

DAR based Poly1305. To improve this design, the CSA

principle is used. For this, the addition is carried out with the

CSA register. This showed a far improved result among the

two designs. As this design is a blend between the DAR and

the CSA, the critical path is greatly reduced improving the

frequency and computation time drastically but at a cost of a

larger hardware area.

C. Authenticated Encryption with Associated Data

 Authenticated Encryption with Associated Data

(AEAD) which is a variant of Authenticated Encryption (AE)

is the means by which data or information can be encrypted

with the assurance of its integrity, authenticity or

confidentiality. The mean the functions of encryption and

authentication can both occur concurrently.

High-Throughput Low -Area Hardware Design of Authenticated Encryption with Associated Data Cryptosystem

that Uses ChaCha20 and Poly1305

91

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

There are generally three main approaches to executing the

authenticated encryption. The form which involves

encrypting the data and then using portions of the encrypted

data to generate a MAC tag known as the

Encrypt-then-MAC. The other form is generating a MAC

from the plaintext or data to be encrypted. This MAC is then

sent in addition to the encrypted plaintext (ciphertext) in what

is known as the Encrypt-and-MAC. The final is where the

MAC is generated from the plaintext. The MAC and the

plaintext are then combined to form a new intermediate data.

This intermediate data is then encrypted to form a ciphertext.

This form is termed the MAC-then-Encrypt. The

ChaCha20-Poly1305 implements a variant of this form of

authenticated encryption used in TLS and its predecessor the

SSL [14,15]. The Associated Data that is appended to this

form of authenticated encryption is to ensure it is contextually

accurate. What this means is that, moving a portion of a valid

ciphertext to another portion will turn out to be invalid and

cause its detection.

D. AEAD_ChaCha20_Poly1305 Architecture

The final architecture shown in Fig. 10, was implemented

using the two modules the ChaCha20 stream cipher and the

Poly1305 authenticator is presented in this sub section. The

main components modules of the overall architecture use the

individually built modules. Since this is a variant of

MAC-then-Encrypt, the key for the authentication is

generated using the ChaCha20. For this key Generation, the

block_count is kept at zero. After the done signal is asserted,

the keystream that is generated will be used to form the key to

the Poly1305. The highest 256-bits of the keystream is

captured and used as the poly1305 one-time key. The keys are

clamped as explained in the section above and the Poly1305

module is enabled to begin execution. When the poly_done

signal is asserted, we have a 128-bit value which will serve as

our authentication tag for the particular batch of data being

encrypted. The Main_Controller unit shown in Fig. 10 asserts

the signal for the chacha20 module to be execute again to now

encrypt the data. The same key, nonce but with the

block_count now set to one and increases for each block. The

increment can be linear or randomly generated This ensures

that the effective nonce is different for each block of 512-bit

chunk of data to be encrypted. After this has completed, the

module AEAD_Recon_Data is enabled for a data

reconstruction for the tag generation. The reconstructed data

is made up of the 4 main parts bulleted below

Á The authenticated tag initially generated

Á The computed ciphertext

Á The size of the Addition Data: AAD, in byte represented

as a 64-bit little-endian integer

Á The size of the ciphertext in byte represented as a 64-bit

little-endian integer

The data is reconstructed by fist placing the AAD data from

bit zero upwards. This is followed by the 64-bit size of the

AAD: AAD_size. Next in the concatenation is the ciphertext

that has been generated and then finally the 64-bit little endian

integer representing the size of the ciphertext. The design can

be parameterized to handle variable sizes. For this design, the

message length used is 512-bit and an AAD used is 96-bits.

This implies that a reconstructed data of size 736-bit long for

Fig. 10. Block Diagram of the

AEAD_ChaCha20_Poly1305 Proposed Architecture

the Poly_CSA. The total clock cycles required to generate

the authentication tag and the ciphertext is a total of 1350

cycle. 20 clock cycles for generating the one-time-key for

authentication, 20 clock cycles to generate the ciphertext, 5x

(262) cycles required for the modulo reduction.

V. RESULT AND DISCUSSION

The hardware implementation of the implementation of the

AEAD_ChaCha20_Poly1305 core architecture was modelled

using the Hardware Descriptive Language (HDL), Verilog.

The Integrated Synthesis Environment (ISE) tools employed

during the design were the Xilinx 14.7 edition and Vivado

2017.2 edition. The design was synthesized on the Virtex 7

FPGA having the XC7V2000T. The Virtex 7 board was used

to perform board test to assess the functional correctness and

accuracy of the proposed architecture. The size the design

occupies in terms of the number of Look-Up Tables (LUTs)

and Slices used by the FPGA to implement the design are

documented in Table- I. Synopsis design compiler tool was

also used to determine the Gate count of the ChaCha20,

Poly1305 and the AEAD_ChaCha20_Poly1305 core

architectures. For Performance evaluation and efficiency of

the proposed architecture, parameters from [16] shown in (9)

and (10) were used to determine the analyze core.

Throughput = (Freq. x No. of bits) ù (No. of Cycles) (9)

Efficiency = (Throughput (Mbps))ù(Area(KGE)) (10)

The operating frequency of the proposed design

Quarter-Round(1xQR) and Single-Round (4xQR) recorded

182.40 MHz and 161.02 MHz respectively. The designs of

the Poly_DAR and Poly_CSA shows that the use of the Carry

Save Adder in performing the modular addition increased the

frequency drastically recoding about 121% rise in frequency.

The Timing simulations of the ChaCha20 Quarter-Round

(1xQR) is shown in Fig. 11 from which the final keystream

and ciphertext obtained is shown in the simulation alongside

the input key, plaintext and the nonce. Fig. 12 shows a timing

simulation of the ChaCha20 Single-Round (4xQR) which

indicates the final state values of the state matrix prior to the

addition of the initial state matrix values. This simulation

presents the individual values that obtained at the end of the

20-clock cycle computation. Fig. 13 shows the timing

simulation diagram of the Poly1305 module with details

regarding ñrò and ñsò key generation, the bulk message sliced

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

92

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

into block chunks and also the CSA algorithm that

performs the modulus computations. Table- II presents the

result of ASIC implementation of the ChaCha20, Poly1305

and the AEAD_ChaCha20_Poly1305. Throughput values

recorded in Table- II demonstrates that ChaCha20 is

comparable to candidates of the eSTREAM project that are

hardware oriented.

Table- I: AEAD Based ChaCha20 and Poly1305 FPGA Implementation Results

Fig. 11. Timing Simulation of ChaCha20 Implementation using 1xQR Architecture

Table- II: AEAD Based ChaCha20 and Poly1305 FPGA Implementation Results

FPGA

Device
Archi tecture Design

Area (Slices)

Frequency

[MHz]

Throughput

[Gbps]
Registers LUTs

VIRTEX 7

XC7V2000

T

(FLG1925)

ChaCha20
4xQR 566 1692 161.02 4.122

1xQR 780 940 182.40 1.167

Poly1305
Poly_CSA 1087 1742 510.75 0.249

Poly_DAR 963 1376 230.48 0.112

AEAD AEAD_ChaCha20_Poly1305 3383 4921 162.16 0.061

Category Design
Technology

[nm]

Area

[KGE]

Frequency

[MHz]

Throughput

[Gbps]

HW-Efficiency

[Kbps/GE]

ChaCha20

4xQR 180 20.71 312 7.987 385.66

1xQR 180 11.00 420 2.688 244.36

4xQR [17] 180 28.11 215 5.505 195.84

1xQR [17] 180 16.69 196 1.252 75.03

Poly1305
Poly_CSA 180 20.89 870 0.425 20.68

Poly_DAR 180 16.00 556 0.272 17.12

AEAD AEAD_ChaCha20_Poly1305 180 50.10 310 0.118 2.35

High-Throughput Low -Area Hardware Design of Authenticated Encryption with Associated Data Cryptosystem

that Uses ChaCha20 and Poly1305

93

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10170782S619/2019©BEIESP

DOI:10.35940/ijrte.B1017.0782S619

Fig. 12. Timing Simulation of ChaCha20 Implementation using 4xQR Architecture

Fig. 13. Timing Simulation of the Poly1305_CSA Architecture

From the ASIC implementation, the proposed architectures

the ChaCha20 1xQR and the 4xQR both demonstrate higher

performance measures. The 1xQR architecture, which

completes its operation in 80 clock cycles and the 4xQR

which completes in 20 cycles recorded a 114% and 45%

increase in throughput respectively compared to the design in

[17]. The highest throughput was recorded with the

ChaCha20 Single-Round(4xQR) with a value of

approximately 8 Gbps. To determine the Area of the ASIC

implementations, the total gate count was divided by the area

of a two-input, one-output NAND gate of size 9.7µm2 in the

0.18µm standard CMOS cell library

VI. CONCLUSION AND FUTURE WORK

This paper presented the VLSI / hardware architecture

implementation of the stream cipher ChaCha20 and the

authenticator Poly1305. In all, a total of 5 architectures were

examined in this paper. The proposed authenticated

encryption cryptographic core architecture occupies smaller

hardware area compared to some existing designs particularly

that of [17].

