Boarding House Selection using SAW Method

Hamid Mukhlis, B. Ayshwarya, Phong Thanh Nguyen, Wahidah Hashim, Hardono, Siti Maesaroh, Yona Desni Sagita, Surmiasih, Rido Sanjaya, Oktafianto, K. Shankar, Oksana P. Denisova, Andino Maseleno

Abstract: Determination of residence in a new area known is influenced by many factors namely location, facilities, contract systems and prices. This journal determines the criteria used in selecting a residence. These criteria were analyzed using simple additive weighting (SAW) method. The results of the analysis obtained in the form of location criteria to determine the most suitable boarding house because the existence of boarding houses in the vicinity of public facilities is highly expected for migrants in a new area. With the advancement of information technology it can answer the need to find a boarding house, and will be very helpful both from the owner and tenant side. And not only that, with this internet technology, prospective tenants can also select a boarding house that suits their wishes. Planning a system that can assist in the determination of temporary housing is needed by tenants in finding housing that fits the desired criteria. With the creation of a DSS (Decision Support System), the selection of boarding houses is expected to help resolve the problem of alternative housing. Therefore a decision support system application program is needed to determine a temporary residence or boarding house. Decision support system is a computer-based system that aims to assist decision making by utilizing data and models to solve unstructured problems.

Index Terms: Location, analysis criteria, decision support system, Simple Additive Weighting

I. INTRODUCTION

A. Background

The issue of decision making is basically a form of selection of various alternative actions that may be selected which process through a certain mechanism, with the desire that it will produce the best decisions such as the existence of a less accurate boarding house that becomes difficult at the beginning for new arrivals [1-5]. With the existence of internet technology, it allows the owners of boarding houses to promote their boarding houses through this medium at a relatively cheap cost [6-10] and can be seen directly by prospective tenants using the Simple Additive Weighting (SAW) method on a decision support system that is one way of solving problems, where consumers will feel helped by the existence of this system by providing recommendations or suggestions for boarding places that are in accordance with consumer criteria by inputting criteria on the system by users [11][12]. So that at the end of the process users will get a list of recommended boarding house based on their input criteria. The results showed that this boarding house search system can help prospective boarding tenants to get alternative boarding places that can be recommended based on the selected criteria.

B. Problem Formulation

Based on background above it can be formulated problem to be solved, it was how to design a decision support system using Simple Additive Weighting (SAW) to determine boarding house selection criteria.

C. Problem Limitation

1. Research was conducted in boarding house around Pringsewu market.
2. This application system is built to make decision in selecting boarding house around Pringsewu market.
3. Decision making system was only to give boarding house alternative rent with the number of options is five boarding houses
4. This decision support system was made by using PHP and MySQL programming language as database.
D. Research Objective
To produce decision support system to determine boarding house using Simple Additive Weighting (SAW).

II. LITERATURE REVIEW

A. System
The system is a network of interconnected procedures collect together to carry out an activity for a particular purpose [13-16]. The system in general is a collection of elements that interact with each other to achieve a goal [17-20].

B. Information
Data and information is a foundation in understanding information system [21-24]. Information is processed data and meaningful data [25-28].

C. Information System
Information is a computerized system for processing data entered into information or data, storing, distributing and producing new information to complete a task automatically or as a supporter of human resources in carrying out the functions of corporate operations, controlling and returning decisions within an organization [29-32]. Information is a group of interconnected component and functions to collect, process and provide output in the form of information needed to finish business duties [33-36].

D. Boarding house definition
Boarding house (bahasa: kost) is a service that offers a room or place to live in with a certain amount of payment for each particular period (generally costs). The word "kost" is actually a derivative of the Dutch phrase "Indekost". "But if the phrase is further elaborated can also mean "stay and eat" inside the house. Often the time goes on and age changes, now the public in Indonesia calls the term "indekost" by abbreviating it as "kost" only. This boarding service is not free, that is with certain payments for each period, usually calculated monthly.

E. Simple Additive Weighting (SAW)
SAW Method is looking for a weighted addition from the performance rating on each alternative on all attributes. SAW Method Required a normalization process decision matrix (X) to a scale which can be compared with all available alternative ratings.

III. RESEARCH METHOD

A. Observation
Observation in the context of scientific research is a study that is endured and carried out systematically, planned and directed at a goal by observing and recording the phenomenon or behavior of a group of people in context in daily life and pay attention to daily life and show scientific research requirements [37-40]. Thus the results can be accounted for the truth.

B. Literature Research Method
Library method is data collection techniques by learning references in the form of documents/files and data collection, legislation, books, research journals, etc., through library research was reviewed the laws and regulations related to the management of regional potential. Need of data revealed about indicators used by investors for decision making investment was obtained through library research towards research books and journals. Library study was also conducted to know technology capabilities information that will be applied in system.

IV. DESIGN AND IMPLEMENTATION
Several things that can be described are as follows

A. Design
This performance assessment of decision support system was used to determine the performance of the selection of boarding house. The stage of making this application, first, determine and plan the criteria in determining the boarding house, namely costs, distance, facilities, and room area.

a. Weight
In this research there were weight and criteria needed to determine boarding house selection.

<table>
<thead>
<tr>
<th>Criteria code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Cost</td>
</tr>
<tr>
<td>C2</td>
<td>Distance</td>
</tr>
<tr>
<td>C3</td>
<td>Facility</td>
</tr>
<tr>
<td>C4</td>
<td>Room size</td>
</tr>
</tbody>
</table>

From the criteria, it can be determined the importance level of criteria based on weight score determined in fuzzy number. Suitability rating of each alternative of each criterion is as follows: table 2 shows location criteria, table 3 shows cost criteria, table 4 shows distance criteria, table 5 shows facility criteria, table 6 shows room size criteria.

<table>
<thead>
<tr>
<th>Location criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close to market (DP)</td>
<td>1</td>
</tr>
<tr>
<td>Close to road (DJR)</td>
<td>2</td>
</tr>
<tr>
<td>Close to worship place (DTP)</td>
<td>3</td>
</tr>
<tr>
<td>Close to restaurant (DRM)</td>
<td>4</td>
</tr>
<tr>
<td>Close to entertainment area (DTH)</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 3. Cost criteria

<table>
<thead>
<tr>
<th>Cost</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 700,000</td>
<td>1</td>
</tr>
<tr>
<td>>700,000<400,000</td>
<td>2</td>
</tr>
<tr>
<td>>400,000<350,000</td>
<td>3</td>
</tr>
<tr>
<td>>350,000<300,000</td>
<td>4</td>
</tr>
<tr>
<td>≤300,000</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4. Distance criteria

<table>
<thead>
<tr>
<th>Distance</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 km</td>
<td>1</td>
</tr>
<tr>
<td>>1 km <700 m</td>
<td>2</td>
</tr>
<tr>
<td>>700 m <350 m</td>
<td>3</td>
</tr>
<tr>
<td>>350 m ≤50 m</td>
<td>4</td>
</tr>
<tr>
<td>≤50 m</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 5. Facility criteria

<table>
<thead>
<tr>
<th>Facility</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>mattress</td>
<td>1</td>
</tr>
<tr>
<td>mattress, wardrobe</td>
<td>2</td>
</tr>
<tr>
<td>mattress, wardrobe, table</td>
<td>3</td>
</tr>
<tr>
<td>mattress, wardrobe, table, fan</td>
<td>4</td>
</tr>
<tr>
<td>mattress, wardrobe, table, fan, TV</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 6. Room size criteria

<table>
<thead>
<tr>
<th>Room size</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x4 m²</td>
<td>1</td>
</tr>
<tr>
<td>4x5 m²</td>
<td>2</td>
</tr>
<tr>
<td>5x6 m²</td>
<td>3</td>
</tr>
<tr>
<td>6x7 m²</td>
<td>4</td>
</tr>
<tr>
<td>7x8 m²</td>
<td>5</td>
</tr>
</tbody>
</table>

b. System Design

Figure 1 shows DFD Level 1.

Figure 2 shows Entity Relationship Diagram (ERD). ERD from Decision Support System of Boarding House selection consisted of 6 tables namely user table, boarding house table, visitor table, boarding house result table, preference table and criteria table, the table is related each other.

B. Implementation

In this research, it would be an example of calculation in looking for boarding house from 3 boarding houses and 1 visitor. Decision making gave preference weight as follows: W = (4,3,2,2). Table 7 shows preference weight.

Table 7. Preference weight

<table>
<thead>
<tr>
<th>Preference</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin</td>
<td>4</td>
</tr>
<tr>
<td>Boarding house</td>
<td>3</td>
</tr>
<tr>
<td>Visitor</td>
<td>2</td>
</tr>
<tr>
<td>Result</td>
<td>2</td>
</tr>
</tbody>
</table>
Boarding House Selection using SAW Method

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Criteria</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost1</td>
<td></td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Cost2</td>
<td></td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cost3</td>
<td></td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision matrix formed was as follows:

\[
X_{Kos} = \begin{pmatrix}
5 & 5 & 3 & 2 \\
4 & 4 & 2 & 2 \\
5 & 5 & 3 & 1
\end{pmatrix}
\]

Matrix Normalization

Cost 1 (K1):

\[
R_{11} = \frac{\min(5,4,5)}{5} = \frac{4}{5} = 0.8 \\
R_{12} = \frac{\min(5,4,5)}{4} = \frac{4}{4} = 1 \\
R_{13} = \frac{3}{\max(3,2,3)} = \frac{3}{3} = 1 \\
R_{14} = \frac{2}{\max(2,2,1)} = \frac{2}{2} = 1
\]

Cost 2 (K2):

\[
R_{21} = \frac{\min(5,4,5)}{4} = \frac{4}{4} = 1 \\
R_{22} = \frac{\min(5,4,5)}{4} = \frac{4}{4} = 1 \\
R_{23} = \frac{2}{\max(3,2,3)} = \frac{2}{3} = 0.67 \\
R_{24} = \frac{2}{\max(2,2,1)} = \frac{2}{2} = 1
\]

Cost 3 (K3):

\[
R_{31} = \frac{\min(5,4,5)}{5} = \frac{4}{5} = 0.8 \\
R_{32} = \frac{\min(5,4,5)}{5} = \frac{4}{5} = 0.8 \\
R_{33} = \frac{3}{\max(3,2,3)} = \frac{3}{3} = 1 \\
R_{34} = \frac{1}{\max(2,2,1)} = \frac{1}{2} = 0.5
\]

Normalization of R matrix was obtained from normalization of X matrix as follows:

\[
R_{Kos} = \begin{pmatrix}
0.8 & 0.8 & 1 & 1 \\
1 & 1 & 0.67 & 1 \\
0.8 & 0.8 & 1 & 0.5
\end{pmatrix}
\]

Then it will be made multiplication of W*R and addition of multiplication result to obtain best alternative by performing greatest score ranking as follows:

\[
V_{cost1} = (0.8*4) + (0.8*3) + (1*2) + (1*2) = 9.6 \\
V_{cost2} = (1*4) + (1*3) + (0.67*2) + (1*2) = 10.3 \\
V_{cost3} = (0.8*4) + (0.8*3) + (1*2) + (0.5*2) = 8.6
\]

Thus alternative (cost 1) was selected alternative as alternative cost that suitable with criteria.

V. CONCLUSION AND SUGGESTION

A. Conclusion

Concept of decision support system design of housing or boarding house is expected to be a reference for further development. From various boarding houses exist in Pringsewu, it is expected to help tenant in determining decent boarding house in accordance with desire from tenant.

B. Suggestion

To improve performance and complete decision support system made, author gives some suggestion as follows:

1. Because of time limitation, author only limited 4 scores of each criterion, namely cost, distance, facility and room size. For system development can be added other variable scores that is possible to reinforce in decision making.

2. Web-based system becomes the true development system to make the application can be accessed everywhere.

REFERENCES

