
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

1004

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11880782S319/19©BEIESP

DOI : 10.35940/ijrte.B1188.0782S319

ABSTRACT--- Without a doubt, multiple core processors have

become primary stream in parallel computing. Therefore, future

generations of applications pivotal role will be played by

parallelism. It must be noted that, the compilers and

programmers could immensely benefit from a program source

code classified in a structured manner. Such a classification

surely helps programmers to identify parallelization scopes or

reasoning about the program code, and associate with other

programmers. To address the challenge of parallel programming,

we worked on source-to-source compiler Bones and developed

species extraction tool extended A-Darwin to ease parallel

programming. In the work done, we present ’Algorithmic

Species’, a new algorithm classification, that encapsulates

required information for parallelization in classes, and embeds

memory transfer requirements for optimization of

communication on heterogeneous platforms. The evaluation of

algorithmic species and the validation of extended A-Darwin are

done by testing the tool against the benchmark suit HPCC. The

unique approach is developed to generate code automatically for

parallel target machines.

I. INTRODUCTION

For the most part, a significant number of the computer

software are produced for serial computation. Be that as it

may, with the development of multi-core processors, parallel

design is promptly accessible on practically every PC and

the product should exploit the benefits of parallel

computing. There has been a gigantic progress in chip

innovation. The clock rate of the chip has expanded from

40MHz to 2.5GHz, in the meantime processors are fit for

executing various instructions in a similar cycle. The normal

number of CPIs (Cycles per direction) has progressed. So

this parallel computing has made an enormous effect on a

variety of areas going from computational simulations for

engineering and scientific applications to business

applications in information mining and transaction

processing.

The hypothesis supporting algorithmic species is liable to

polyhedral model, expecting the source code to be described

as an arrangement of static relative nested loops. The

characterizations of array references are acquainted with

deference with nested loops. Changes are stated to

consolidate characterization referring to a similar array and

then to make an interpretation of those into algorithmic

Revised Manuscript Received on July 10, 2019.

Mustafa Basthikodi, Dept.of CSE, Bearys institute of Technology,

Mangalore, Karnataka India. (mustafa@bitmangalore.edu.in)

Ahmed Rimaz Faizabadi, Dept.of CSE, Bearys institute of

Technology, Mangalore, Karnataka India.

(ahmedrimaz@bitmangalore.edu.in)

Waseem Ahmed, Faculty of Computing and IT, King AbdulAziz

University, Jeddah, Saudi Arabia. (waseem.pace@gmail.com)

species, permitting classifying of non-static relative loop

nests. Classification is liable to more point by point

deliberations that hold extra execution important data and

that consider the structure of loop nest. A tool is altered in

light of the exhibited hypotheses to consequently classify

the program code.

Currently an array of areas are investigated which include

frameworks for new programming, language extensions,

auto tuning and optimizations of compilers and auto

parallelizing the source to source compilers. A program

code that is represented in a structured manner can be of

great benefit for compilers and programmers targeting

parallel and heterogeneous systems, which is a set of rules

instrumental in dictating the class of code based upon a set

of properties. The examples for the existing classifications

of algorithm are given as Berkeley dwarfs [1], Galois

classification system [2] and the algorithmic skeletons [3].

We propose to present a algorithmic species, a novice

classification of algorithm on the basis of polyhedral model

[4] that realizes the following goals:

• Programmers focusing on parallel processors will have

the capacity to reason about their program code by

methods for algorithm classes

• Specialists and compiler architects will have the capacity

to plan their compilers in view of this classification

As it were, species of algorithm can be viewed as

changing polyhedral data into a classification of algorithm.

Algorithmic species is an algorithmic classification that

satisfies the afore said objectives. Every individual classes

are formally stated, straightforward, pertinent to any loop

nest that is affine, and depict program source code in detail,

catching structure of parallelism, open doors for information

reuse, region data, and information sizes. Moreover, the

utilization of algorithmic species in various tools and

models is recognized:

• Removal of species naturally from C source code making

use of a tool

• A compiler that is source-to-source and skeleton-based

• An expectation model for species based execution

The first inadequacy for the most part influences

application developers who are new to parallel models and

simultaneous programming, while the second deficiency

generally influences smart software engineers who are

utilizing compilers to play out the underlying parallelization

and will additionally enhance the subsequent code. The third

HPC Based Algorithmic Species Extraction

Tool for Automatic Parallelization of

Program Code
Mustafa Basthikodi, Ahmed Rimaz Faizabadi, Waseem Ahmed

HPC BASED ALGORITHMIC SPECIES EXTRACTION TOOL FOR AUTOMATIC PARALLELIZATION OF

PROGRAM CODE

1005

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11880782S319/19©BEIESP

DOI : 10.35940/ijrte.B1188.0782S319

deficiency influences a wide range of clients. A

classification of algorithm is utilized to manage a compiler

in light of algorithmic skeletons. A method is displayed to

consequently produce proficient and intelligible parallel

code belong to the parallel designs (with an emphasis to

GPUs). We construct this strategy with respect to

’algorithmic species’, a classification of algorithm of

program code in view of the polyhedral model. Algorithmic

species typify data, for example, memory access patterns

and information re-utilize. Algorithmic species frame the

foundation of our methodology, which incorporates a device

to naturally extricate species from affine static loops(ASET)

and then source-to-source compiler in view of skeletons

(Bones).

• A distinctive integration of a compiler which is based of

bones compiler with an algorithm classification also

referred as algorithmic species. This skeleton based

compiler could be used in flows of compilation that are

fully automatic as manually identification of skeletons

is no longer required.

• Host-accelerator exchanges (CPU/GPU) in a ASET and

expanded bones are optimized and introduced with

new optimizations, skeletons and targets that include

caching of registers coarsening of threads and transfers

that are of zero copy.

• We debate and illustrate the advantages of our distinctive

approach by creating OpenMP source code for the

benchmark suit HPCC.

The primary objective of this work is to build an

automatic species extraction tool which works for both array

references and pointer references. The tool is the extended

version of A-Darwin which extracts the algorithmic species

to automatically classify the program code. The tool also

covers the following additional functionalities:

• Classification of program code in light of pointer

references

• Classification of Conditional expressions

• Classification of Incremental statements

• Classification of Mathematical functions

• Classification of User defined functions

• Classification of Variants and Constants

The tool generates the code in more readable form,

allowing users to further optimize the algorithms. The work

proposes a fully automatic compiler and does not require

any code restructuring. The tool also to be optimized for

efficient storage of data in memory and reduction of

execution time.

II. EASE OF USE

Identified as working on design technologies for

parallelism [5][6][7]. The pattern languages are proposed to

direct software engineers by giving descriptions of much of

the time happening issues. They commonly provide patterns

at various levels, yet regularly begin at a high level of

abstraction. An OPL is used as illustration for the pattern

language [5][7], which utilize motifs (termed in OPL as

computational patterns), that is a first classification step. A

moment step includes auxiliary patterns, which depict the

association of patterns related to computations. In the event

that we accept the yield matrix S belong to stencil

calculation (listing 2.2) to be utilized as contribution to the

grid and vector multiplication (listing 2.1), we may classify

the arrangement of illustrations as "pipe-and-channel"

structural example. A pattern language besides gives

examples to parallel programming technologies. For the

illustrations we can choose the "information parallelism"

algorithmic procedure, a "loop parallelism" usage

methodology, and the parallel execution design such as

SIMD. Albeit most descriptive than motifs, an OPL is as yet

planned for the purpose of manual classification, making it

unsatisfactory to meet both objectives. Work on algorithmic

skeletons [3] have prompted a substantial count of algorithm

groupings. A summary of traditional skeletons is identified

in a skeleton review [8], this overview of regular

algorithmic

Skeletons finish up with a general grouping, catching

numerous skeletons belong to works done already. We

utilize this classification to assess the cases. In the grid and

vector multiplication (listing 2.1), every calculation

S[m][n] * v[n] brings about a halfway result of a individual

component of vector r, which needs recombination. This fits

well the “divide-and - conquer” or "recursively partitioned"

skeleton. The stencil calculation given in listings registers an

outcome specifically, preparing it to fit the "queue of task"

or "homestead" skeletons. Such established skeletons are

extremely natural, however give no mechanization,

incompleteness ensures, no definition in formal way, and

these are excessively coarse-grained, making it impossible

to reach our objectives. Later contemporary skeleton work

[9[10][11][12] utilizes lower level abstraction

characterizations.

The skeletons which are used as example are map-

array,map-overlap,map-reduce, map and reduce[11] or

pixel-to-global, neighborhood-to-pixel, pixel-to-pixel, and

bucket handling [8]. Identified with the current skeleton

work are idioms [13], a classification framework

characterizing 6 classes: stencil, scatter, stream, gather,

transpose and reduction. While classifying examples

utilizing contemporary idioms and skeletons, we locate the

accompanying outcomes. The 2D Jacobi stencil calculation

of posting 2.2 groups as "map-overlap" [11],"neighborhood-

to-pixel" [11], or as the comparable "stencil" [13]. In any

case, these classification methods can’t arrange the full grid-

vector multiplication illustration, in spite of the fact that the

example can even now be classified somewhat: the

calculation in the inward loop j can be delegated

"reduce"[11], "scalar diminishment" [10] or "reduction"

[13]. Contrasted with established skeletons, contemporary

skeletons and idioms are as of now a superior fit for our

objectives: formally they are characterized in few cases[10],

and every so often give tools to automation[14]. All things

considered, we can’t recognize a solitary skeleton grouping

which satisfies all necessities, lacking angles, for example,

fulfillment and granularity for instance. The numerical

portrayals of code, for example, Æcute [15], the polyhedral

model [16], and the SUIF loop change detailing [17] are

dissected keeping in mind the end goal to get appropriate

portrayals. The compiler directives, for example,OpenACC

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

1006

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11880782S319/19©BEIESP

DOI : 10.35940/ijrte.B1188.0782S319

and OpenHMPP are firmly coupled to program code. In

spite of the fact that directives which are not entirely

considered algorithm characterizations, they have the

likelihood to catch data on code sections. OpenACC for

instance issued by different compilers to indicate locales of

code which are to be offloaded to the accelerators [18]. It is

utilized by for instance HMPP Workbench [19] and PGI

Accelerator [20]. As more of OpenACC mandates are

updated to the program code, an expanding measure of data

will wind up noticeably accessible to the compiler.

The algorithm classification is intended for software

engineers and tools to catch and reason about parallel

algorithms. As indicated by [11], the classification is at first

proposed to be utilized to address the test of parallel

programming, and expectation of performance for

heterogeneous and parallel frameworks. With a specific end

goal to address these two difficulties, algorithm

classification is described in the work done. A classification

utilizes a constrained vocabulary and a very much defined

syntax, making a modular classification. Furthermore, the

classification is termed as parameterisable. Both the

parameterisability and modularity of the classified algorithm

make it conceivable to empower an extremely fine-grained

and the classification which is generally applicable.

The "Algorithmic Species" is presented [13], which

epitomizes pertinent data for parallelization in classes, and

inserts memory exchange prerequisites to streamline

communication on heterogeneous stages. Work is assessed

by physically characterizing the species of algorithms in two

genuine applications and benchmark sets. For identification

of algorithmic species in source code, the ASET is planned.

This algorithmic species is strong base for present and

upcoming work based on parallel technologies, fit for

tackling numerous issues identified with parallel computing.

The updated hypothesis of algorithmic species is

exhibited in [21]. The hypothesis comprises of a five-tuple

portrayal of every single array references and respective

joining operations. Second, an augmentation of this

hypothesis termed SPECIES+ is introduced, giving more

itemized six-tuple portrayal. With that, it is conceivable to

hold important access patterns data not caught by first

species of algorithms, for example, row-major versus

column-major grid accesses. Both the new speculations are

actualized as a tool, empowering the program code

classification.

A model [22] is introduced to anticipate the execution of

a stated application on processor having many/multi cores.

Considering the complexities involved in programming

these processors, this model does not need program code to

be accessible for the objective processor. This is as opposed

to available execution forecast methods, for example,

scientific models and test systems, which expect code to be

accessible and enhanced for the architecture targeted. To

empower execution expectation before algorithm usage,

algorithms are characterized utilizing a current classification

of algorithm. For every class, a particular occurrence of

roofline demonstrate is made, bringing about another class

related show. This model, termed as the boat hull model,

empowers execution expectation and choice of processor

before the improvement of specific code related to design.

The boat hull structure is exhibited utilizing GPUs and

CPUs as target designs. This demonstrates execution is

precisely anticipated for a case genuine application.

Maintaining the Integrity of the Specifications

The template is used to format your paper and style the

text. All margins, column widths, line spaces, and text fonts

are prescribed; please do not alter them. You may note

peculiarities. For example, the head margin in this template

measures proportionately more than is customary. This

measurement and others are deliberate, using specifications

that anticipate your paper as one part of the entire

proceedings, and not as an independent document. Please do

not revise any of the current designations.

III. ALGORITHMIC SPECIES

The discussions done in previous section show that, our

requirements are not fulfilled by existing algorithm

classifications. Therefore, algorithmic species, an extended

classification introduced in this work. The classification

characterizes species at a lower deliberation level, by

classifying nested or individual relative loops, such as loops

with relative array accesses and relative static loop control.

The species are inspired upon the classification of skeletons

done before. Here we discuss the construction of

algorithmic species based on the array access patterns by

giving examples.

HPC BASED ALGORITHMIC SPECIES EXTRACTION TOOL FOR AUTOMATIC PARALLELIZATION OF

PROGRAM CODE

1007

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11880782S319/19©BEIESP

DOI : 10.35940/ijrte.B1188.0782S319

In listing 3.1, given a case of a loop nest where iterations

can be executed freely. In each iteration of this illustration a

component of array S[][] is perused and increased by 3, to

deliver a subsequent component of an array R[][].The arrays

are accessed from lists 0 to 127 and from 0 to 255 in the first

and second dimensions separately. At the point when the

names of the arrays are consolidated alongside data, the

outcome is acquired as appeared in the primary column of

the Table 3.1. The outcome is translated as: on each iteration

of the dimensions 0 to 127 and 0 to 255, single element is

required belong to input array S[][] to create single element

belong to yield R[][]. The listing 3.2 spreads the grid-vector

multiplication example code. Here, yield of a solitary

element of res[] requires a whole row belong to array ip[][]

and the entire array v[]. Those accesses are recognized as:

chunk for row access of ip[][] and full for entire access of

v[]. A subsequent algorithmic species is appeared in second

row of Table 3.1, which is translated as: to yield a solitary

element out of the aggregate 50 elements in res [], the whole

array v[] of size 100 and a lump of data in next dimension of

ip[][] are required. Presently, consider the Jacobi stencil

calculation illustration given in listing 3.3. To get a solitary

element of array d [], a neighborhood of 3 components from

s [] is required. A neighborhood access and a chunk access

contrast from every other in a way that the last suggests

cover between consequent repetitions, similar to the reality

in the case of stencil operations. The total classification is

found in the third row of the Table 3.1, where the measure

of the neighborhood is given extending from −1 to +1. In

every one of the classifications of the Table 3.1, the measure

of parallelism is demonstrated, for example, PARALLEL

(128,256), which is equivalent to the measure of loop cycles

In the decrease to scalar case of listing 3.4, we can find

that, the outcome res[0] is produced using the commitment

of each input element of arrays x[] and y[]. The outcome is

considered as shared in view of the fractional contribution.

This conduct is caught in the classification given as

algorithm species in fourth row of Table 3.1. The offset

access to array y[] is caught by indicating the reaches from 2

till 9.The classification of example in listing 3.6 requires a

2x2 tile from B[][] to acquire a solitary yield in A[][]. The

tile is classified as 2-dimensional chunk access, creating

classification as given in the fifth line of Table 3.1.

 Algorithmic species is a classification that catches lower

level calculation descriptions belong to nested loops or

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

1008

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11880782S319/19©BEIESP

DOI : 10.35940/ijrte.B1188.0782S319

singular loops and statements in loop’s bodies. The primary

key to the algorithmic species methodology is that each

array, referenced in the nested loop which is classified, is

appointed as one of access patterns. A group of access

patterns, belong to input and yield arrays from the nested

loop, and after that structures the species.

The algorithmic species extraction tool extended A-

Darwin is developed that takes a sequential C code as input

and automatically generates the species-annotated C code.

The large number of such code segments are created and

given as input to the tool to get the design patterns

consisting of algorithmic species. There are set of bench

programs used to test the tool for working. The modified

tool works comparatively well for all the set of code

segments.

As the Algorithm 1 illustrates, while both matrices X and

Y are zero, the access pattern is classified as update. When

matrix X is non zero and Y is zero, the access pattern is

classified as element. When X is zero and Y is non zero, the

access pattern is classified as full. When X and Y both are

non-zero, the access pattern is classified either as chunk or

as neighborhood in light of regardless of whether there

exists a re-use between the diverse accesses to array. And

when there is a constant, the access pattern is classified as

constant. The algorithm takes as input the access

descriptions for the entire array and gives the access patterns

Pt for these inputs. The variable Sp will contain the

respective species for the array patterns.

The Algorithm 2 gives the idea how the patterns for the

conditional statements are retrieved from source code. The

algorithm takes the input as array access descriptions and

produces as output the parallel patterns for the conditional

statements. The function get_if in the algorithm scans the

source code for any occurrences of conditional statements

by using pattern matching step. If the comparison operation

is found, then the species compare is added to the pattern to

be returned from the function.

Table 4.1: Number of kernels in each algorithmic class of

HPCC and its state of execution

IV. EXPERIMENTATION AND RESULTS

To validate the work done against the standard

benchmarks, the required running environment is setup by

making ready hardware and installing the required software.

The Bones, a parallel compiler, extended A-Darwin and the

required gems are configured and installed in the framework

containing quad core systems for experimentation and

analysis.

In order to analyze and evaluate the usage of hypothesis

belong to algorithmic species and their extractions

automatically, the validation of extended A-Darwin is done

by testing the code against the four benchmark suits such as

HPCC . The unique approach is developed to generate code

automatically for parallel target machines.

The 13 modules are taken from the 7 kernels of HPC

Challenge benchmarks, such as HPL, STREAM, Random-

access, PTRANS, FFT, DGEMM and b_eff. All the selected

modules contain nested loops and tested with extended A-

Darwin for the classification. The results after the

classification tabulated in Table 5.3. Many of the modules

are classified with 100% hit ratio. The least hit ratio we

achieved is 60% for rbuckets.c module, which had data

dependencies carried from the previous loops. The 71

species are classified successfully out of 79, achieving 90%

HPC BASED ALGORITHMIC SPECIES EXTRACTION TOOL FOR AUTOMATIC PARALLELIZATION OF

PROGRAM CODE

1009

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11880782S319/19©BEIESP

DOI : 10.35940/ijrte.B1188.0782S319

success ratio overall. The columns IV through VII shows the

recognition of programming constructs such as functions,

conditional statements, pointers, constants which are in the

body of the loops. The executed kernels produce different

access patterns according to the variables, function call,

built-in function and the calculation used in a particular

kernel. The results analyzed in Table 4.1 is represented

graphically in Fig. 4.1 for more understanding about success

rate of the benchmark execution.

Figure

4.1: Graphical analysis of execution of HPCC Kernels

V. CONCLUSIONS

The parallel computing has played a vital role in

improving the performance of applications. In order to make

manual programmer right programs that are free from errors

and comparatively save time, automatic parallelization is

needed. In this work, ’algorithmic species’ is presented,

which is an algorithmic classification that captures

algorithmic details of low level and presents them using few

easy to understand access patterns. This algorithmic

classification is designed to capture and reason about

parallel algorithms for programmers.

The future work is identified in the direction of irregular

algorithms, i.e. algorithms that are composed of data

structures such as trees, graphs, matrices that sparse. By

classifying such irregular algorithms, the insights in to

structures of data locality and parallelism could help in

producing efficient code for programmers and compilers.

Moreover, the extension of the algorithmic species with

additional information and information about inter-species

could help programmers and compilers in fusing the

multiple species.

REFERENCES

1. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J.
Wawrzynek et al., “A view of the parallel
computinglandscape,” Communications of the ACM, 2009.

2. K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H.Lee, A. Lenharth, R. Manevich, M.
Méndez-Lojo et al., “The tao of parallelism inalgorithms,” in

ACM Sigplan Notices, vol. 46, no. 6. ACM, 2011, pp. 12–25.
3. M. I. Cole, Algorithmic skeletons: structured management of

parallel computation. Pitman London, 1989.
4. L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache,

“Iterative optimization in the polyhedral model: Part i, one-
dimensional time,” in Proceedings of the International
Symposium on Code Generation and Optimization. IEEE
Computer Society, 2007,pp. 144–156.

5. K. Keutzer and T. Mattson, “A design pattern language for
engineering (parallel) software,” Intel Technology Journal,
vol. 13, no. 4, 2010.

6. B. L. Massingill, T. G. Mattson, and B. A. Sanders, “A pattern
language for parallel application programs,” in European

Conference on Parallel Processing. Springer, 2000, pp. 678–
681.

7. T. Mattson, B. Sanders, and B. Massingill, “Patterns for
parallel programming. The software patterns series; ed. by
john vlissides,” 2004.

8. D. K. Campbell, “Towards the classification of algorithmic
skeletons,” REPORTUNIVERSITY OF YORK
DEPARTMENT OF COMPUTER SCIENCE YCS, 1996.

9. W. Caarls, P. P. Jonker, and H. Corporaal, “Algorithmic
skeletons for stream programming in embedded
heterogeneous parallel image processing applications,” in
Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International. IEEE, 2006, pp. 9–pp.

10. C. Nugteren and H. Corporaal, “A modular and
parameterisable classification of algorithms,” Eindhoven
University of Technology, Tech. Rep. ESR-2011-02, 2011.

11. R. M. Stallman, “Gnu compiler collection internals,” Free
Software Foundation, 2002.

12. C. Nugteren and H. Corporaal, “Introducing bones: a
parallelizing source-to-source compiler based on algorithmic
skeletons,” in Proceedings of the 5th Annual Workshop on
General Purpose Processing with Graphics Processing Units.
ACM, 2012, pp. 1–10.

13. P. Custers, “Algorithmic species: Classifying program code

for parallel computing,” Master’s thesis, Eindhoven
University of Technology, 2012.

14. L. Carrington, M. M. Tikir, C. Olschanowsky, M.
Laurenzano, J. Peraza, A. Snavely, and S. Poole, “An idiom-
finding tool for increasing productivity of accelerators,” in
Proceedings of the international conference on
Supercomputing. ACM, 2011, pp. 202–212.

15. L. W. Howes, A. Lokhmotov, A. F. Donaldson, and P. H.
Kelly, “Deriving efficient data movement from decoupled

access/execute specifications.” HiPEAC, vol. 9, pp. 168–182,
2009.

16. P. Feautrier, “Dataflow analysis of array and scalar
references,” International Journal of Parallel Programming,
vol. 20, no. 1, pp. 23–53, 1991.

17. M. E. Wolf and M. S. Lam, “A data locality optimizing
algorithm,” in ACM Sigplan Notices, vol. 26, no. 6. ACM,
1991, pp. 30–44.

18. A. Cohen, A. F. Donaldson, M. Huisman, and J.-P. Katoen,
“Correct and efficient accelerator programming (dagstuhl
seminar 13142),” in Dagstuhl Reports, vol. 3, no. 4. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

19. R. Dolbeau, S. Bihan, and F. Bodin, “Hmpp: A hybrid multi-
core parallel programming environment,” in Workshop on
general purpose processing on graphics processing units
(GPGPU 2007), vol. 28, 2007.

20. M.Wolfe, “Implementing the pgi accelerator model,” in
Proceedings of the 3rd Workshop

21. on General-Purpose Computation on Graphics Processing
Units. ACM, 2010, pp. 43–50.

22. C. Nugteren, R. Corvino, and H. Corporaal, “Algorithmic
species revisited: A program code classification based on
array references,” in Multi-/Many-core Computing Systems
(MuCoCoS), 2013 IEEE 6th International Workshop on.

IEEE, 2013, pp. 1–8.
23. C. Nugteren and H. Corporaal, “The boat hull model: enabling

performance prediction for parallel computing prior to code
development,” in Proceedings of the 9th conference on
Computing Frontiers. ACM, 2012, pp. 203–212.

