
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

773

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

ABSTRACT--- Storing the data in cloud helps in satisfying the

demand of data access at anyplace, anytime. In cloud storage,

users authenticate whether the data has been stored to the cloud

storage server correctly. In order to enhance the storage

provision, an Effectual Homomorphic Tag based Block for

Dynamic Provable Data Possession (EHTB-DPDP) framework

has been designed. This framework checks for the data integrity

in the cloud storage server. The existing PDP, DPDP schemes

were analyzed and the drawbacks encountered in those systems

have been reframed using the proposed methodology. The major

benefit of the proposed EHTB-DPDP is that it offers an effectual

dynamic provable data possession and data integrity. This

scheme spotlights on the integrity of the remote data by reducing

data storage space, so that users can retrieve data efficiently. This

security enhancement is achieved by the block tagging

methodology. In addition, converting the variable block size to

the fixed block size using hash function is also investigated. The

feasibility of the scheme is proved by aanlyzing the security and

the performance.

Index Terms — Cloud Storage, Effectual Homomorphic Tag

based block for Dynamic Provable data possession Possession,

Homomorphic Hash Function, Data Possession, Tag block

I. INTRODUCTION

Cloud Computing approach is an on-demand service

hosted over the network servers to process, store and to

manage the data, rather than personal computer or local

server [1]. Cloud services and the applications related to it

runs on the distributed network which provides virtual

resources to the end users. These kinds of resources can be

accessed using various network protocols and standard

internet services. Authenticating the data using verification

process is a major concern related to cloud data. The main

cause for checking data authenticity is extremely high

probable malicious activity suffered by both Cloud Service

Provider (CSP) and cloud users. There are numerous ways

to address this crisis. Cloud users can make use of

encryption and decryption process to address this issue. But

it requires numerous computational overhead and functional

complexities. So data auditing is another way to handle this

issue.

Classical ways of auditing the data are Provable Data

Possession (PDP) methods [2]-[3]. But there are numerous

complexities associated with PDP methods such as

Revised Manuscript Received on July 10, 2019.

K.Kavitha, Assistant Professor, Department of Computer Science,

Dr.G.R.Damodaran College of Science, Coimbatore, T.N, India.

Dr.M.Punithavalli, Professor, Department of Computer Applications,

Bharathiar University, Coimbatore. T.N, India.

computational complexity, storage complexity. These kinds

of method s allow only the encrypted data and access only

limited amount of queries. The PDP model is not

appropriate for batch auditing because of the computational

complexity [4]-[5]. The advantages of these methods are

only the pre-processing stage that can be applied for the

outsourced data. As well, these methods do not preserve

privacy. There is a trade-off between storage overhead and

communication cost. Some PDP necessitates higher cost for

lesser storage. In order to overcome the shortcomings of

PDP [20], Dynamic Provable Data Possession (DPDP) was

proposed [6].

Dynamic Provable Data Possession (DPDP) provides a

strong model to offer guaranteed data integrity by extending

the dynamic range of operations over the outsourced data,

such as insertion, modification, deletion and append [8].

DPDP protocol comprises of three stages for static data

(Setup, Challenge, and Retrieve) along with the update

phase. In setup phase, homomorphic algorithm will be used

to encrypt the data. In the updation phase, the original file

may be updated. During challenge phase, the data integrity

is achieved by the latest version of updated file (it may be a

different file). In retrieve phase, the client retrieves the

updated version of the file. The foremost challenge with

handling the static data in DPDP [7] is to ensure that the

client has received the latest file version (i.e. preventing the

use of old file) while fulfilling the overhead requirements.

DPDP framework is an amalgamation of diverse polynomial

time algorithms (KeyGen DPDP, PrepareUpdate DPDP,

PerformUpdate DPDP, VerifyUpdate DPDP, GenChallenge

DPDP, Prove DPDP, execute DPDP). With the use of seven

polynomial algorithms DPDP fails to provide robustness in

the cloud service. In order to overcome the shortcomings of

the DPDP scheme, the proposed work has anticipated a new

framework known as Effectual Homomorphic Tag Based

Block for Dynamic Provable Data Possession (EHTB-

DPDP). Figure 2 shows the pre-processing and verification

of data in cloud to enhance data integrity [2].

An Effectual Homomorphic Tag Based Block

for Dynamic Provable Data Possession

Framework Based on Block Tagging the

Cloud File

K.Kavitha, M.Punithavalli 

AN EFFECTUAL HOMOMORPHIC TAG BASED BLOCK FOR DYNAMIC PROVABLE DATA POSSESSION

FRAMEWORK BASED ON BLOCK TAGGING THE CLOUD FILE

774

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

Figure 1: Pre-processing and verification for data

integrity in cloud representation

EHTB-DPDP posses tagging the file stored in the cloud,

in addition the variable block size is also converted to fixed

block size using hashing function. Here, BlockTag

algorithm has been designed to improve the authenticity of

the stored file in the cloud. The design goal of the proposed

EHTB-DPDP protocol is summarized below:

1) To effectively and securely allow authorized users to

access the file from CSP.

2) To use a set of tags for the files in the cloud storage

for verification purposes.

3) To enable data owner to execute dynamic data

updation process while maintaining the consistent

level of data.

4) To ensure data owner with the evidence that CSP

possesses all the copies of data.

The rest of the work is organized as follows: Section II

explains the related work based on PDP methods and

homomorphic encryption. Section III elaborates the

proposed EHTB-DPDP framework for blocks and tag

generation along with the additional parameters evaluation.

Section IV shows the experimental analysis and the results

associated with the proposed work. Section V describes

about the security and the additional storage acquired on

executing the proposed work. Section VI concludes and

discuss the future work.

II. RELATED WORKS

Rajat Saxena, [2016] anticipates enhanced data integrity

verification methodology with the use of multiple third party

auditors. This approach makes use of Paillier Homomorphic

Cryptography [PHC], Combinatorial batch codes [CBC] and

homomorphic tag for the purpose of data integrity

verification. This approach is appropriate for cloud storage

as the homomorphic tag efficiency and with the PHC

advantages. Moreover, this approach satisfies dynamic data

operation with reduced overhead. Here, CSP does not

require added data structure to organize data operations. It

offers enhanced security during Traffic flow examination,

Man in the Middle attack (MITM), Defacement,

Impersonation and data storage misuse due to the Pailliers

self binding property, which has the ability to change cipher

text without any alterations in plain text and intruders

misguide. Finally, the recital of this approach is not bounded

with disk I/O, in which the comparison with the prevailing

methods shows usefulness and effectiveness of the method.

Ertem Esiner, [2014] described a novel data structure

(FlexList) and its optimized implementation in cloud data

storage. FlexList efficiently assists variable block sized

dynamic provable updates and this approach assists in

handling multiple updates and proofs at considerably by

enhancing scalability. Energy efficiency of FlexListbased

and FlexDPDP was studied for cloud storage. This method

also illustrates how to build data structure from scratch with

O (n) time, indeed of O(n log n) time. This method

anticipates how to parallelize this kind of authenticated

structure.

Ertem Esiner, [2014] extended FlexDPDP process with

the use of efficient and optimized algorithms, and examine

their recital with the real world network realistic settings.

The speed obtained using this method is 6 while using 8

cores of pre-processing phase, 60% enhancement on updates

in server side and 90% enhancement in checking the client

side. This method was deployed on PlanetLab testbed and

offer detailed examination using real version workload

traces control system.

K.Renugha, [2017] described about exclusive-or

homomorphism encryption process is executed on

protecting data searching method. The new system initiates

randomization process for every session as data pattern can

be conserved. Searching examination can be carried out by

on-demand calculation grounded on session key generation

by randomization technique and require not store key in

cloud. Hashing based indexing is cast of to enhance

searching performance. This method is verified

experimentally by searching files in untrusted server

environment. XOR homomorphism encryption process is

practically executed and it proves that this scheme is

extremely efficient.

Junyao YE, [2016] anticipates PDP based homomorphic

hash function in accordance to the problems encountered in

various literatures. This technique permits users to guarantee

data integrity in server for unlimited times of iteration. It

also offers provable data possession in data integrity

protection and server. Users merely require save parameters,

transmission data is little in verification procedure, and

provable data possession verification is one time

homomorphic hash computation. Security examination and

performance examination prove that this technique is

feasible. The method obtains data recovery. Here, error-

correcting codes or erasure codes are utilized to encode data

before computing hash value.

Ayad F. Barsoum, [2015] deliberates a novel PDP scheme

(known as MB-PMDDP), which assists in outsourcing of

multi-copy dynamic information, where data owner is

competent of not accessing and archiving data copies stored

by CSP, but as well scaling and updating the copies on

remote servers. The proposed method is to address multiple

copies of dynamic data. Interaction amongst CSP and

authorized users is measured in this process, where

authorized users can flawlessly make use of data copy

obtained from CSP by single secret key shared amongst data

owner. Furthermore, proposed scheme assists public

verifiability, permits possession-free verification and

arbitrary number of auditing where verifier has

competencies to check data integrity though possesses or

retrieves file blocks from server.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

775

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

Yasmina Bensitel, [2016] describes the utilization of fully

homomorphic, and illustrates that this method does not

provide best solution. Hybrid partial homomorphic

encryptions and somewhat homomorphic encryptions can be

cast of indeed of the existing methods. Some instances are

provided for certain statistical functions utilized in real life

for medical application, and which is utilized over encrypted

data.

Adil Bouti, [2015] presented protocol improvement for

evaluation on encrypted data in clouds. The overhead is

measured to be low to make the protocol in implementation.

Distribution of computation between numerous cloud

providers enhanced security at additional communication

cost enhancement to protocol for calculation on encrypted

data in clouds.

Clementine Gritti, [2015] provided two solutions to

resolve adversarial crisis anticipated in DPDP scheme with

DP and PV proposed. These solutions assists in overcoming

replay attacks, modifies attacks and attacks over data

privacy by bombarding MHT or IHT into construction. Two

novel schemes are secure against server and data privacy-

preserving against TPA in random oracle.

III. PROPOSED METHODOLOGY

a. Model Design

The system model comprises of three different categories

that are shown in figure 3. These categories are extremely

significant in the process of cloud storage.

1) Cloud Service Provider (CSP): CSP is a third party

who offers storage services to data owners/holders.

Data owners can upload data to storage space offered

by CSP [12]. Auditing also performed by CSP when

data owner request for data integrity [13]-[14].

2) Data owner (D): D is an individual or an enterprise

that outsources data in cloud. ‘D’ will partition the file

of variable block size into fixed sized data blocks and

produces multiple data blocks models.

3) User (U): U has adequate access rights to use or share

data blocks stored in S [15]-[18]. User U will holds

valid decryption key to access the entire encrypted

data blocks.

In the proposed framework, the files are partitioned into

blocks, and generate tags for each block. Then, computes a

hashing value for every tag to guarantee tag integrity and

use these tags to guarantee the file block integrity. This

EHTB-DPDP framework supports key generation, updation,

and verify, prove, challenge, prove, execute along with the

chunks like setup [insert, delete, modify].

Figure 3: Pictorial representation of the system model.

Subsequently, the building block of homomorphic

encryption scheme is discussed in this section. Key

generation is the process in the algorithm that provides

outputs public key Pk and private key P'k. Encrypt function

is the process that consumes message ‘m’ and public key Pk

and provide outputs ciphertext ‘c’. Decrypt function is the

process ciphertext ‘c’ and private key P1
k and outputs

message ‘m’. Function evaluation is step in algorithm that

considers evaluation key, set of cipher texts c1.....cn, circuit,

and ciphertext ce outputs. Circuit specifies certain function

realized with logical gates.

A list will be maintained to search the specific block of

the stored file quickly. Assume, ‘F’ is a file with ‘n’ blocks

{x1, x2, x3,...xn}. The server/client stores the block at the

bottom level, which is identified using a pointer. Hence, the

server can easily identify the block of the file in the list

using the pointer quickly.

The client generates an array ‘β’. The item ‘Vi’

corresponds to the block Xi signifies the number of times the

block has been modified/updated. The client computes tag

‘T’ to every block along with the hash value for the

corresponding block. Pointer has been maintained amongst

the blocks, tags, list, array and the hash value.

b. EHTB-DPDP FRAMEWORK

i) Description

The ultimate purpose of the proposed method EHTB-

DPDP framework is to permit the users to check whether

untrusted storage server maintains the data appropriately.

Usually, there are two parties in cloud: storage server and

client. The scheme of the proposed methods comprises of

various phases based on homomorphic hash function 1)

Setup; (2)TagBlock; (3)Challenge; (4) ProofGen; (5)

ProofVerify (6)Execute (7) Update.

Firstly, we need to divide the file ‘F’ into ‘n’ blocks. In

the following phases such as TagBlock phase and

ProofVerify phase, all the calculations are based on the file

blocks.

ii) Design Goal

The proposed scheme should fulfil the properties:

(1) High efficiency: to permit data owner to resourcefully

verify integrity of numerous data copies [21]-[22].

AN EFFECTUAL HOMOMORPHIC TAG BASED BLOCK FOR DYNAMIC PROVABLE DATA POSSESSION

FRAMEWORK BASED ON BLOCK TAGGING THE CLOUD FILE

776

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

(2) To guarantee that cloud servers should not cheat users

[19] if there are no copies of data.

(3) Assist dynamic operations: to permit data owners to

regularly update outsourced data by doing insert,

modify, delete, and append operations simultaneously.

iii) Keygen phase

The client makes use of a key generation function Keygen

generate private key and public key { P'k, Pk}. The public

key is transferred to the server while the private key is

maintained secretly. Partition the files to variable block {

x1,x2,x3,...xn}, call the BlockTag to generate tags to every

block. Hashing functions are used to convert the variable

block size to fixed block size and the array β is build at the

client-side, finally every item is initialized to 0 initially with

the pointer. Figure 4 shows the items to be stored in the list

of hash array.

Figure 4: Hash array for storing the block of file in cloud

iv) KeyGen (1k)  { P'k, Pk}

1. Initialize 1k

2. Evaluate P’k = k1, K1  {0,1}k; Pk = (M, g), M= pq is

the product of two prime and the g is the high order in

Z*
N

3. Output { P'k, Pk}

v) BlockTag (P'k, Pk, Xn, Vi, i)  {Ti, hi}

1. Initialize P’k = (N,g), P’k = k1, block file Xi, block

index ‘b’

2. Compute Ti = g
xi mod N, hi = Hk1 (Ti || F(vi) || i), H is a

hashing function, F is a pseudo random function

3. Output {Ti, hi}

The combination of block tags, block set, hashing value

and the list constitute the file processed. The client uploads

the file processed and the public key to the server, thus

maintains the array and private key secretly.

vi) File update  Insert

Update insert, inserting a new block Xi
* after the

existing block X. Client adds V*
n+1 at the end of β array

(considering the ‘X’ original block), that is initialized to 0,

generate a tag Ti
* and hashing value hi

* for Xi
*, send (Ti

*, hi
*,

Xi
*) to server. The server changes the position of the pointer,

and inserts the new tag Ti
*, new hashing value hi

* and the

new block Xi
*, finally maintains the pointer amongst the list.

The client sends the hashing function Hk and randomly

generates gs to server to check whether the update insert is

performed successfully.

1. Client: adds V*
n+1 at array end β, that has been

initialized to 0, compute Ti
* = gm

i
, h

n+1 = Hk1 (T
*
i || F

(V*
n+1) || n+1), sends (Xi

*, Ti
, h

n+1) to server.

2. Server: Move the pointer to the bottom level of the

list, insert Xi
*,Ti

* at the appropriate position, add h*
n+1

at hashing value array end, maintain the pointer and

update the list.

3. Client: selects hashing function Hk and random

number S, compute gs= gs, send to server.

4. Server: search list to find (j+1)th block, and its

corresponding hashing value h(j+1), tag Tj+1.

5. Compute Ts = gs
mj+1 mod N, h= Hk(Tj+1 || h (j+1)

/), sends

(Ts,h) to clients.

6. Client: Compute (Ti*)s? =Ts,Hk (Ti
* || h*

n+1)? = h.

The update  insert is successful.

vii) File update  Edit

File update  Edit, edit the ith block Xi to Xi
*. The index i

is transferred to server. Server searches the list to identify

the bottom level and its subsequent block Xi, hashing value

hi, tag Ti. The client checks the data integrity by hashing

value, block, tag and the corresponding β array. Client

updates the item Vi to Vi
* in β array, updates Xi to Xi

*, Ti to

Ti
*, hi to hi

* and send it to the server. Server updates the

corresponding hash value Hk and randomly generated gs to

check whether the update edit operation is successful.

1. Client: transfer i to server

2. Server: search the list to find block mi, tag Ti, hash

value hi
/ and the index i/ to client

3. Client: Evaluates Ti
?=gXi mod N, hi?=Hk1(Ti || F(Vi

/) ||

i/) to check the block integrity, update vi
/ in β array ,

update mi  mi
*, computes Ti

* = gX
i
* mod N

4. Hi*= Hk1 (Ti || F (Vi
*) || i/, sends (Xi

*, Ti
*, hi

*) to server

5. Server: Update mi  mi
*, Ti Ti

*, hi hi
*

6. Client: sends hashing function Hk and random number

gs=gs to server

7. Server: Searches list to find the block Xi, and its tag

Ti, subsequent hash value hi
/, computes Ts=gs

Xi mod n,

h = Hk(Ti || hi
/), sends (Ts,h) to client

8. Client: Evaluate (Ti
*)s?= Ts, Hk(Ti

* || hi
*)?= h.

The update edit is successful.

viii) File update  delete

File update delete, delete any block from the server

storage. Client transfers the index to the server. Server

searches the list to find block Xi, hashing value hi, tag Ti,

finally it deletes the block and the corresponding tags,

hashing value and index from the server. Client updates it

and sends it to server as shown in figure 4. Client send the

hashing function Hk and the randomly generated gs to server,

to check whether the delete operation is performed

successful.

1. Client sends the item i to be deleted to the server

2. Server: Search the list to find the block Xi, Tag Ti,

hashing value hi
/
 and deletes Xi and Ti and the hashing

value related to it and updates the list to client

3. Client verifies the correspondence between hashing

value and the tag, the pointer changes its position.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

777

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

4. Server: updates hi
/
 hi

*, delete hn

5. Client: selects hashing function and random number s,

gs=gs, sends to server

6. Server searches the array to find the hash value,

blocks and tags. Ts = gs
X

i
*, Mod N, h= Hk(Ti || hi

/)

sends to client

7. Compute (Tn
/)s=? Ts, Hk(Tn

/ || hi
*)? = h

The update delete is successful.

Figure 5: Flow of data upload, update and verification

process in cloud

ix) (F/, φ_)←ExecUpdate (F, φ, Update)

This algorithm is executed by CSP, in which the input

parameters are files ‘F’, tags ‘T’ and request for updation

(sent by data owner). The output provided will be the

updated version of the file, ‘F/’ along with the updated

signatures ‘φ’. After performing any changes in the file

block, data owner executes the challenge protocol, to

guarantee that the operation performed by the cloud is

absolutely correct. The update operation may be inserting a

new file or deleting a file or it may be modifying the file.

x) P←Prove (F, φ, challenge)

This algorithm is run by the CSP. It takes the replicas of

file F, the tags φ and challenge vector sent by the data owner

as input and returns a proof P which guarantees that the CSP

is actually storing s copies of the file F and all these copies

are intact. The data owner uses the proof P to verify the data

integrity. There are two phases in this algorithm:

This process is carried out by the CSP. It generates the

file replica, tags ‘T’ and challenge sent provided by the data

owner as input and returns proof ‘P’ to ensure that CSP is

storing the file copies F and these copies are actually intact.

Hence, the data owner makes use of ‘P’ to check the data

integrity. There exists two processes in this phase, one is

challenge phase and subsequent one is response phase.

a) Challenge: Here, data owner confronts to check for

integrity for the outsourced copies [23]-[24]. This challenge

phase in cooperate two verification schemes: i)

Deterministic—all file blocks from acquired from the file

copies are utilized for verification ii) Probabilistic—only

certain blocks of all the copies were used for verification.

1. Input: Number of blocks to be challenged

2. Select two random numbers

3. Output: challenge = {(i1,...ic), (a1,...ac)}

Probabilistic key is utilized to produce random indices

ranging from 1 and m. File blocks obtained from these

indices are cast off for verification. In each verification

process, percentage of file verified and it maintains the

account for entire file verification. At challenge phase, data

owner selects verification scheme he wishes to use. If owner

selects deterministic verification scheme, he generates

Key1. If he selects probabilistic scheme he produces two

keys, Key1 and Key2. Key1 generates c (1 ≤ c ≤ m) random

file indices which signify file blocks used for verification by

the cloud service provider. Key2 generates random values

and CSP should use these random numbers for each file

copy during computation of response. Data owner transmits

the generated keys to CSP.

b) Response: Response phase is carried out by CSP,

while challenge for data integrity verification is acquired

from data owner. Here, proof for probabilistic verification

scheme (deterministic verification follows the same

procedure). CSP obtains two keys, Key1 and Key2 from

data owner. With Key1, CSP generates set {C}, (1≤ c ≤ m)

random file indices ({C} < {1, 2, . . . ,m}), which specifies

file blocks that CSP utilized for verification. With Key2,

CSP generates random values T = {t1, t2, . . . ,ts }. Cloud

carry out two operations; one on tags and other on file

blocks.

i) Tag operation: Cloud multiplies file tags related to file

indices produced by Key1.

ii) File block operation: Cloud takes every file copy and

multiplies the entire file blocks related to file indices

produced by Key1. Product of each copy is raised as power

to random number generated for that specific copy by Key2.

1. Input: Query challenge and file server stored

2. Search hash array to obtain corresponding tags and

blocks through pointer

3. Output: Block file

If file size enlarges, more blocks are needed to specify the

file. In all the cases, the performance of the proposed

method remains the same. It does not degrade the

performance of computation [25] as that of the traditional

methods. This is because, the entire blocks are monitored by

the hash table, if there is any overflow in the amount of

block obtained, it automatically re-constructs the block

storage structure. Even though deletion and insertion

operation has complications, it does not cause any raise in

computational complexity [26]. The file blocks generated

after homomorphic addition signifies the encrypted file

blocks of the updated version requested by data owner [28]-

[30]. Encrypted file blocks are given to the data owner, in

which the data owner decrypts the file block to acquire the

requested version.

IV. SECURITY ANALYSIS

Here, the formal analysis of security provided by our

proposed method is examined. Initially, data owner encrypts

files and store it over the cloud. The cloud is an untrusted

medium; hence the cloud is identified as a preliminary

adversary in this method. The proposed scheme is secure,

when the cloud does not cheat the data user or the owner by

modifying the file blocks and as well pass the

response/challenge phase generated by data owner. The

proposed scheme offers flexibility to data owner to transmit

different files and keys in challenge phase to CSP. This

AN EFFECTUAL HOMOMORPHIC TAG BASED BLOCK FOR DYNAMIC PROVABLE DATA POSSESSION

FRAMEWORK BASED ON BLOCK TAGGING THE CLOUD FILE

778

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

guarantees that response produced by CSP will not be same

for all challenge transmitted by data owner [27]. This

neglects the opportunity for CSP to forge response devoid of

actually computing it.

a. Security against deletion of file blocks with same value

When the files are partitioned into blocks, there is a

chance that only few blocks will have the similar values.

The data tags will be same for all the blocks with same

value. Even though, the file blocks have similar value, their

cipher texts will not posses similar values. File blocks are

encrypted and those encrypted blocks do not possess similar

value. The cloud can only identify the file blocks with

similar value by recognizing the tags with same value.

Cloud can also over loop data owner by storing one data

block and eliminating data blocks that possess same file tag.

In order to avoid this over loop, the proposed scheme

randomizes data before generating tags. Data in the tags are

summed up with the randomly generated numbers from the

private key as is termed as keytag. Hence, even if the tag

values are same, the data file underlying will not possess

same value.

V. RESULTS AND DISCUSSION

To execute the proposed strategy, the simulation of the

proposed method is examined under MATLAB

environment. The experiments were conducted on the top of

private cloud platform with diverse configurations on

Windows 7 operating system. Cloud user utilizes the

Windows virtual server for storage infrastructure. Based on

users’ requirements, they can decrease or increase the

storage locations. Local cloud is utilized to retrieve or store

the data. This can also be examined in the EC2 and Amazon

S3 cloud in the future. However, it facilitates the owner to

store the copies of files on cloud server which is located in

various geographical locations. The computational time for

the diverse operations performed by the data owner, CSP

and verifier is recorded. Thus, the computational efficiency

of the proposed method on different copies is also

investigated in the table.

The experiment is performed on a system with Intel(R)

Core(TM) 3.10 GHZ processor and 4 GB RAM computer.

The Pairing Based Cryptography (PBC) library was utilized

to implement cryptographic operations in the mechanism.

Encryption security parameters was set up as ‘λ’ = 60. The

copies of data file of size 1, 5, 10 and 20 MB are stored to

private cloud correspondingly and their copies are

partitioned into 218 blocks. Assume that the desired security

level is 128-bit, and thus the proposed work dealt with 256-

bit group order. The computational cost for each phase (file

size 1 MB) in this protocol is given in Table II.

Table I shows the various conventional PDP schemes’

merits and demerits with the proposed method.

Table I: Comparison of the existing PDP scheme with the proposed methodology with the merits and demerits

S.No Existing PDP

scheme

Merits Demerits

1 PDP

1. Protection during small corruptions.

2. Reduced update block complexity

3. RSA is used for security.

4. Permits public verifiability

1. Block searching is poor

2. It applicable only for static files.

3. It is insecure against dynamic

data block.

2 DPDP

1. Block modification and updating is

allowed.

2. Integrity verification is efficient due to

querying and updating DPDP scenario.

1. Client performs extra

computations.

2. Construction of rank based

scheme is complex.

3 CPDP

1. Permits multi cloud storage.

2. Hash index hierarchy minimizes search

complexity.

1. Due to multi cloud storage,

Combiner model needs to be

added which may increase

complexity.

4 SPDP

1. It offers secure PDP by encryption

2. It is light weight PDP scheme as it

facilitates Homomorphic hash function.

1. Fails in randomness.

2. Client can easily deceive the

server.

5 EHTB-DPDP

1. Permits multi-cloud storage.

2. Provides more flexibility as block is

partitioned in multiple parts.

3. Tagging every file block enhances

security.

4. Varied size key generation for every

block reduces extraction of data from

cloud by unauthorized party.

5. Reduced computational time for

generating variable key size.

1. Incurred overhead

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

779

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

a. Computational Complexity

Server side complexity computation: During

verification, server computes ‘c’ hash integers H(mi),

1<i<c . Then, it calculates value K=

C1h(m1)+C2h(m2)+...+Cch(mn). The computation of each

cih(mi) corresponds to the product of two integers being t

and h bits long. Hence, upper bound is obtained on

server’s computation time:

|c|timehash+ |tc| timeadd (3)

Verifier side complexity computation: Except for

additional pseudorandom number generations

corresponding to challenge, computing cost analysis ‘R’

is similar to client side also. Therefore, verifier

computation time is upper bounded and given by,

|c|timeprng(t)+|tc|timeadd(th)+timehash(r) (4)

The computation complexity between any server and

verifier is slightly higher, and still very reasonable. This

does not incur time for verifier of data blocks to be

detected, as computational complexity requires very

small mathematical calculation. Table II shows the

computing the complexity and the comparison with the

existing work. The communication cost related to block

size is shown in figure 15.

Table II: Comparison of computational complexity of the proposed Vs existing scheme

Scheme Server

Computation

Client

Computation

Communication

overhead

PDP O(1) O(1) O(1)

Scalable PDP O(1) O(1) O(1)

DPDP I O(log n) O(log n) O(log n)

DPDP II O(n€ log n) O(log n) O(log n)

EHTB-DPDP O(n) O(n) O(n)

Figure 15: Graphical representation of block size Vs

communication cost

b. Additional Storage

One of the parameter to check the efficiency of the

proposed method is the calculation of additional storage.

Additional storage is the proof for dynamic data storage

both at the server and the client side. Client side

comprises of private key and the hash array, while the

server side comprises of hashing value and the tag set.

For instance, assume if as 4GB file ‘F’ is partitioned into

1,000,000 4KB blocks, and every block comprises of

128B tag and 20B hash value. The hash list has ‘n’ nodes,

and every node is 4B, therefore the additional storage

encountered in the server side is approximately about 152

MB, which is the about 4% of original file. The hash

array has 1,000,000 times for every item is 2B

(216=65536 time). Thereby, the additional storage in

client side is 2 MB, which is roughly of 0.06% of original

file. Table III shows the time consumed for accessing the

file with varied block size.

Table III: Table for computing the data in the block

file with the time utilized for execution

Data block size [GB] Time (ms)

64 (26) 7.982

128 (27) 20.245

256(28) 37.554

512(29) 102.167

1024(210) 351.012

Figure 16: Graphical representation of block size Vs

average data integrity time

Figure 17: Graphical representation of block size Vs

file updating time in seconds

AN EFFECTUAL HOMOMORPHIC TAG BASED BLOCK FOR DYNAMIC PROVABLE DATA POSSESSION

FRAMEWORK BASED ON BLOCK TAGGING THE CLOUD FILE

780

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

Figure 16 and 17 shows the graphical representation of

average data integrity with respect to the number of size

and the time taken to update the blocks in the file.

Compared to the conventional DPDD scheme, our

proposed model shows better storage of data, i.e. 4% at

server side and 0.06% at client side. The proposed

method shows increased rate of additional storage. This

leads to the reduction of communication and

computational complexity. As the storage capacity

growth is within the range.

Figure 18: Graphical representation of number of

blocks Vs data integrity time in sec

Figure 18 shows the graphical representation of

average data integrity time in seconds for the sum of

blocks in the cloud environment. The time taken to

perform this operation by the proposed EHTB-DPDP

method is lesser in contrast to the existing methods such

as PDP, DPDP, CPDP, BPDP methods. The proposed

EHTB-DPDP method shows better trade off than the

prevailing methods in terms of security and performance.

Table IV: Comparison table for computing average

data integrity time in seconds of existing and the

proposed EHTB-DPDP method

S.No
Various

Schemes

Iterations

1

Iterations

2

Iterations

3

1 PDP 1.5113 2.4342 2.6596

2 DPDP 1.4760 2.3652 2.4496

3 CPDP 1.4033 2.2293 2.2873

4 SPDP 1.1942 1.9044 2.0379

5
EHTB-

DPDP
0.8889 1.6264 2.0247

Table IV illustrates the average time taken for data

integrity in cloud environment. The anticipated EHTB-

DPDP method shows lesser time for attaining integrity

than the existing methods. Assume if the block size

increases from 5, 10, 15 and so on, the time taken by the

proposed method is 0.8889, 1. 6264, 2.0247 respectively.

It is lesser when compared to the existing methods.

Figure 19: Graphical representation of number of

blocks Vs time taken to update the entire block in sec

Figure 19 shows the graphical representation of time

taken to update the encrypted data in seconds for the sum

of blocks in the cloud environment. This graph considers

blocks of three different sizes. The time taken to perform

this operation by the anticipated EHTB-DPDP method is

lesser in contrast to the existing methods such as PDP,

DPDP, CPDP, BPDP methods. The proposed EHTB-

DPDP method shows better trade off than the prevailing

methods in terms of security and performance.

Table V: Comparison table for updating the

encrypted data(secs) of existing and proposed EHTB-

DPDP method

S.No
Various

Schemes

Iterations

1

Iterations

2

Iterations

3

1 PDP 1.6176 2.4620 2.5984

2 DPDP 1.1764 2.4370 2.5512

3 CPDP 1.1522 2.2669 2.2018

4 SPDP 1.0932 1.9524 2.0730

5
EHTB-

DPDP
0.9264 1.6562 1.9311

Table V depicts the updation of encrypted data in cloud

environment. The anticipated EHTB-DPDP method

shows lesser time for updating the blocks than the

existing methods. Assume if the block size increases from

5, 10, 15 and so on, the time taken by the proposed

method is 0.9264, 1. 6562, 1.9311 respectively. It is

lesser when compared to the existing methods.

Figure 20: Graphical representation of number of

blocks Vs time taken to update the encrypted data in

sec

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019

781

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

Figure 20 shows the graphical representation of time

taken to update the encrypted data in seconds for the sum

of blocks to perform insert, delete, and update operation

in the cloud environment. This graph considers blocks of

three different sizes. The time taken to perform this

operation by the anticipated EHTB-DPDP method is

lesser in contrast to the existing methods such as PDP,

DPDP, CPDP, BPDP methods. The proposed EHTB-

DPDP method shows better trade off than the prevailing

methods in terms of security and performance.

Table VI: Comparison table for performing insert,

delete and update operation of existing and proposed

EHTB-DPDP method

S.No
Various

Schemes

Iterations

1

Iterations

2

Iterations

3

1 PDP 1.3514 3.0256 1.2365

2 DPDP 1.3151 2.8390 0.9869

3 CPDP 1.2231 2.7929 0.9721

4 SPDP 1.0933 2.7902 0.9690

5
EHTB-

DPDP
0.4813 2.2212 0.9315

Table VI shows the time taken to update the encrypted

data in cloud environment. The anticipated EHTB-DPDP

method shows lesser time for inserting, deleting and

updating the blocks than the existing methods. Assume if

the block size increases from 5, 10, 15 and so on, the time

taken by the proposed method is 0.4813, 2.2212, 0.9315

respectively. It is lesser when compared to the existing

methods.

VI. CONCLUSION

This investigation mainly focussed of efficient storage

of data in the untrusted cloud server storage. Hence, this

research work introduced an Effectual Homomorphic Tag

based Block for Dynamic Provable Data Possession

(EHTB-DPDP) framework, in which it suitable to

minimize the block access by introducing tagging with

variable file sized block. This computation is held in both

the client and also in the server side. The solution

generated by the proposed method fits to reduce the

overhead at server side with constant amount of

communication. The significance of the proposed work

lies in homomorphic verifiable tags. It facilitates data

possession devoid of having access to actual data file.

Experiments conducted on this scheme, leads to assuring

probabilistic possession by sampling server storage, and

practical implementation is also carried out in large

datasets, whereas the traditional methods fails in

achieving proven possession in large datasets. The

investigation shows that the scheme imposes significant

computational complexity and additional storage on

server. Further work can be extended for checking the file

integrity and remote procession with the use of proposed

methodology.

REFERENCES

1. Feng Dengguo, Zhang Min, Zhang Yan, et al. Study on
cloud computing security. Journal of Software, 2011,
2(1):71-83

2. Ateniese G，Burns R，Curtmola R， et al． Provable

data possession at untrusted stores. Proc of the 14th ACM
Conf on Computer and Communications Security. New

York: ACM， 2007: 598-609.

3. Da Xiao，Jiwu Shu，Kang Chen,et al． A practical data

possession checking scheme for networked archival
storage. Journal of Computer Research and Development,
2009, 46(10):1660-1668.

4. Ateniese G, Dipr, Mangini L V, et al. Scalable and
efficient provable data possession. Proc of the 4th
International Confon Security and Privacy in
Communication Netowrks (SecureComm 2008). New
York: ACM, 2008:1-10.

5. Chen B ， Curtmola R. Robust dynamic provable data

possession. Distributed Computing Systems Workshops

(ICDCSW), 32nd International Conference on ． Macau:

IEEE, 2012: 515-525.

6. Zhu Y, Wang H, Hu Z, et al. Cooperative provable data
possession. Beijing: Peking University and Arizona

University，2010.

7. Zhao Kaiyong, Chu Xiaowen, Wang Mea. Speeding up

homomorpic Hashing using GPUs. The 2009 (44th) IEEE
Conference on Communication (ICC 2009), Dresden,
Germany, June 14-18, 2009: 1-5.

8. Erway, C., K¨up¸c¨u, A., Papamanthou, C., Tamassia, R.:
Dynamic provable data possession. In: Proceedings of CCS
2009, pp. 213–222 (2009)

9. Esiner, E., K¨up¸c¨u, A., ¨Ozkasap, O.: Analysis and
optimization on flexDPDP: a practical solution for

dynamic provable data possession. In: Proceedings of ICC
2014 (2014)

10. Gritti, C., Chen, R., Susilo, W., Plantard, P.: Dynamic
provable data possession protocols with public verifiability
and data privacy (2015).

11. Gritti, C., Susilo, W., Plantard, T.: Efficient dynamic
provable data possession with public verifiability and data
privacy. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS,

vol. 9144, pp. 395–412. Springer, Cham (2015).
12. Wang, B., Li, B., Li, H.: Knox: privacy-preserving auditing

for shared data with large groups in the cloud. In: [12] Bao,
F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol.
7341, pp. 507–525. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31284-7 30

13. Wang, B., Li, B., Li, H.: Panda: public auditing for shared
data with efficient user revocation in the cloud. IEEE

Trans. Serv. Comput. 8(1), 92–106 (2015)
14. Wang, C., Chow, S., Wang, Q., Ren, K., Lou, W.: Privacy-

preserving public auditing for secure cloud storage. IEEE
Trans. Comput. 62(2), 362–375 (2013)

15. Yu, Y., Au, M.H., Mu, Y., Tang, S., Ren, J., Susilo, W.,
Dong, L.: Enhanced privacy of a remote data integrity-
checking protocol for secure cloud storage. IJIS 14, 1–12
(2014) Yu, Y., Au, M.H., Mu, Y., Tang, S.,

16. Ren, J., Susilo, W., Dong, L.: Enhanced privacy of a

remote data integrity-checking protocol for secure cloud
storage. IJIS 14, 1–12 (2014)

17. Zhu, Y., Ahn, G.-J., Hu, H., Yau, S.S., An, H.G., Hu, C.-J.:
Dynamic audit services for outsourced storages in clouds.
IEEE Trans. Serv. Comput. 6(2), 227–238 (2013)

18. Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.S.:
Dynamic audit services for integrity verification of
outsourced storages in clouds. In: Proceedings of SAC

2011, pp. 1550–1557 (2011)
19. H. Suo, Z. Liu, J. Wan, et al. “Security and privacy in

mobile cloud computing”, Wireless Communications and
Mobile Computing Conference, vol. 14, no. 3, pp 655-659,
July, 2013.

https://doi.org/10.1007/978-3-642-31284-7%2030

AN EFFECTUAL HOMOMORPHIC TAG BASED BLOCK FOR DYNAMIC PROVABLE DATA POSSESSION

FRAMEWORK BASED ON BLOCK TAGGING THE CLOUD FILE

782

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B11430782S319/19©BEIESP

DOI : 10.35940/ijrte.B1143.0782S319

20. A. F Barsoum, M. Hasan, “Provable Possession and
Replication of Data over Cloud Servers”, Technical
Report, CACR, University of Waterloo, Report 2010/32,
2010.

21. A. F Barsoum, M. Hasan, “On Verifying Dynamic

Multiple Data Copies over Cloud Servers”, Iacr
Cryptology Eprint Archive, vol. 2011, pp 447-448, August,
2011.

22. H. Q Wang, “Proxy Provable Data Possession in Public
Clouds”, IEEE Transactions on Services Computing, vol.
6, no. 6, pp 551-559, December, 2013.

23. S. Halevi, H. Danny, P. Benny, et al. “Proofs of ownership
in remote storage systems”, ACM Conference on

Computer and Communications Security, pp 491–500,
October, 2011

24. M. Gondree, Z. Peterson. “Geolocation of data in the
cloud”, ACM Conference on Data and Application
Security and Privacy, pp 25-36, 2013.

25. J. Zhao, H. X Li, C. Wu, et al. “Dynamic pricing and profit
maximization for the cloud with geo-distributed data
centers”, IEEE INFOCOM, pp 118-126, April, 2014.

26. M. Silic, G. Delac, I. Krka, et al. “Scalable and Accurate
Prediction of Availability of Atomic Web Services”, IEEE
Transactions on Services Computing, vol. 7, no. 2, pp 252-
264, June, 2014.

27. J. K Liu, M. H �u, W. Susilo, et al. “Secure sharing and
searching for real-time video data in mobile cloud”,
Network IEEE, vol. 29, no. 2, pp 46-50, April, 2015.

28. C. Gentry, «Toward basing fully hamamarphic encryptian

on warst-case hardness,» Advances inCryptology -
CRYPTO 2010, val. 6223, pp. 116-137, 2010.

29. C. Gentry, «Fully hamamarphic encryptian using ideal
lattices,» Proceedings of the forty-first annual ACM
symposium on Theory of computing, pp. 169-178, 2009.

30. C. Gentry, S. Halevi et V. Vaikuntanathan, «A simple
BGN-type cryptasystem from LWE,» Advances in
Cryptology - EUROCRYPT 2010, val. 6110, pp. 506-
522,2010.

31. Rajat Saxena, “Cloud Audit: A Data Integrity Verification
Approach for Cloud Computing”, Twelfth International
Multi-Conference on Information Processing-2016
(IMCIP-2016), Procedia Computer Science 89 (2016) 142
– 151

32. Junyao YE, “Code-based Provable Data Possession
Scheme for Integrity Verification in Cloud Storage”, 2016
International Conference on Network and Information

Systems for Computers
33. Ayad F. Barsoum, “Provable Multicopy Dynamic Data

Possession in Cloud Computing Systems”, IEEE
Transactions On Information Forensics And Security, Vol.
10, NO. 3, MARCH 2015

34. Yasmina BENSITEL, “Secure data storage in the cloud
with homomorphic Encryption”, IEEE 2016

35. Adil Bouti, “Towards Practical Homomorphic Encryption

in Cloud Computing”, 2015 IEEE 4th Symposium on
Network Cloud Computing and Applications

