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Abstract: We projected a 3 species Ecological model with a 

Prey and 2 predators. Distributed kind of delay is 

incorporated within the interaction of prey and second predator is 

taken for investigation. The system dynamics is studied at its 

interior equilibrium purpose with exponential kind of delay 

kernels. The impact of your time delay on the energising behavior 

of the system is studied exploitation Numerical 

simulation. it's shown that the delay arguments with totally 

different delay parameters exhibit wealthy dynamics. 

 

Keywords: co-existing state, local stability, global stability, 

Time delay, Numerical simulation.  

I. INTRODUCTION 

  Mathematical modeling in Ecology gains importance in 

recent decades. The stability analysis of ecosystems is quite 

intersecting and complex in nature. Differential equations are 

widely used in the stability analysis. Braun [8] and Simon’s 

[9] explain the applications of differential equations in this 

area. Lokta [1] and Volterra [2] studied the different models 

in population ecology.Kapur [3, 4] discussed the models in 

biology, medicine, epidemiology, ecology etc. May [5], 

Freedman [6],Paul colinvaux [7] contributed a lot to this field. 

Time delays are natural in ecological phenomenon. The 

stability analysis of time delay models are widely explained 

by Cushing, J.M [10], Sreehari Rao [11], 

Gopalaswamy.K[12]. Time delay in interactions in three 

species models with a prey, predator and competitor models 

are discussed by paparao [13-17]. In spite of that a single prey 

with two predator model is taken for investigation. The model 

is represented by system of integro-differential equations and 

system dynamics is studied at co-existing state. Numerical 

simulation is allotted in support of stability analysis using 

MAT lab simulation. 

II. MATHEMATICAL MODEL 
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populations are also considered for investigation.Keeping the 

above aspects in view, the model is characterized by the 

following system of   integro- differential equations. 
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Where the parameters in the above model is described as 

follows  

A.  Nomenclature: 

S.No Parameter Description 

1 
1N , 2N  

& 3N  

Population strengths of  three 

populations (prey,  first 

predator  and  second predator)  

respectively 

2 
1a , 2a , 3a  Growths rates of  three 

populations  

3 

( 1,2,3)

ii

i




 

Inter species competitions 

rates of three species    

(negative values) 

4 
12  Prey and first predator 

interaction rate  ( negative 

value)  

5 
21  First predator and prey 

interaction rate ( positive 

value) 

6 
23  First and second predators 

interaction rate (negative 

value)  

7 
32  Second and first predators 

interaction rate  (negative 

value) 

7 
13  Prey and second predator 

interaction rate  (negative 

value) 

9 
31  Second predator and prey 

interaction rate  (positive 

value)   

10 
d1, d2, d3 

Death rates of three 

populations  

11 1

2

( ) &

( )

k t u

k t u





 

kernel weights  

 

Put t-u = z  , we get the following system of equations  
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Kernels can be chosen of exponential type   

III. EQUILIBRIUM STATES: 

Solving the system of equations (2.1) by equating to zero we 

get the equilibrium point is given by 

E1 : Co-existing state   
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This equilibrium state exist only when, 

1 2 30, 0 , 0N N N                                (3.11)    

IV. STABILITY OF THE EQUILIBRIUM POINT E1: 

Theorem: The interior equilibrium point   1 1 2 3, ,E N N N  

is locally asymptotically stable  

Proof:  Let the variational matrix is given by  
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With The characteristic equation 
3 2

1 2 3 0b b b     
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By Routh-Hurwitz criteria, the system is stable if 1 0b  , 

 1 2 3 0b b b  and  3 1 2 3 0b b b b  . 

   Clearly  
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By algebraic calculations  
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 1 2 3 0b b b  (Majority of the terms are positive)    

 (4.4)   

Also  3 1 2 3 0b b b b   

Hence the interior equilibrium point   1 1 2 3, ,E N N N  is 

locally asymptotically stable  

V. GLOBAL STABILITY 

Theorem:  Theinterior equilibrium point  

 1 1 2 3, ,E N N N is globally asymptotically stable  

Proof: Let the Lyapunov function be   
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The time derivate of ‘V’ along the solutions of equations (2.1) 

is  
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From the equation (2.1)   we have 
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By proper choice of 1 2 3, &a a a
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Using the inequality 
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0
dV

dt
  

Therefore the system is globally stable at interior equilibrium 

 1 1 2 3, ,E N N N  

VI. NUMERICAL EXAMPLE 

Graphs Description: 

S.No          

Figures 

Description 

1 The 

figures(A)   

Shows the variation of N1, N2 and N3 

with respect to Time (t)  

2 The 

figures(B)   

The phase portrait of N1, N2 and N3  

. 

Example 1:  Let a1=6, α11=0.01, α12=0.45, α13=0.3, a2=2.5, 

α21=0.43, α22=0.1, α23=0.32, a3=3, α31=0.01, α32=0.12, 

α33=0.23, d1 = 0.02, d2 = 0.02, 

d3 = 0.03, N1=15, N2 =15, N3 

=15. 
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The systems of equations (2.1) are simulated using MATLAB 

using ode45.The system of equations without delay is solved  

with the same package we get the following results illustrated 

by the graphs 6.1(A), 6.1(B) for the following parametric 

values: 

 
  Fig:6. 1(A)          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 6.1(B) 

 

For the above mentioned parametric values, the three 

populations asymptotic to the fixed equilibrium point E (3, 

7,10). Hence the system is asymptotically stable.  

Exponential function is given by 

1 2( ) ( ) 0azk z k z ae for a    

Then the Laplace transform of  1 2( ) & ( )k z k z  are defined 

as 1 2

0

( ) ( ) t at a
k k e ae dt

a

 




   
  

The results are simulated for the above system of equations 

(2.3) Using MAT LAB simulation with the parameters shown 

in Example 1 with different kernel values are plotted below. 

1. =0.5, a= 5 E (3, 8, 9) 

 

                                  Fig: 6.2(A)            

 

 
Fig: 6.2(B) 

 

The system is asymptotically stable to a fixed equilibrium 

point E (3,8,9) .For fixed value of =0.5, as on a value 

increases from 1 to 100, still the system is asymptotically 

stable to the fixed equilibrium point. For =0.5, a= 150, the 

system is asymptotic   to a fixed equilibrium E (3,7,10) .  

2. =10, a= 0.5E (3, 8, 10) 

 

 
Fig: 6.3(A) 

            

 

The system is asymptotically stable to a fixed equilibrium 

point E (3, 8, 10). For fixed value of =10, as on a value 

increases from 1 to 100, still the system is asymptotically 

stable to the fixed equilibrium point. For =10, a= 150, the 

system is asymptotic to a fixed equilibrium E (2, 13, 7)  

3. =0.5, a= 0.5 E (3, 11, 8) 
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   Fig: 6.4(B) 

The system is asymptotically stable to a fixed 

equilibrium point E (3,11,8)  

 

         4. =0.5, a= 1 E (3, 9, 9) 

 
Fig: 6.5(A)          

 

 

 

 

 

 

 

 

 

 

 

   

Fig: 6.5(B) 

The system is asymptotically stable to a fixed equilibrium 

point E (3,9,9)  

VII. CONCLUSION 
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