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Abstract: The subject of Special functions has a lot 

importance during the last few decades.  The intend of this work 

is to test the convergence and to introduce the extended linear 

generating relation for the generalized hypergeometric 

function.  The  result is followed by its applications to the 

classical polynomials. 

 
Index Terms: Generalized Hypergeometric polynomial, 

Hypergeometric polynomials modified Jacobi polynomial, 

Laguerre polynomial. 

 

I. INTRODUCTION 

   

Many of the special functions like Laguerre, Hermite,  

Legendre and Konhauser polynomials has several 

applications in mathematical physics and statistics.  Few 

decades onwards many researchers gave their generalizations, 

extensions and related properties like generating functions, 

extended generating functions, recurrence relations and 

solved some of the integrals using these functions.  

Previously in the paper [10], we defined a class of 

generalized hypergeometric function  
( , ) ( , , )nB x y w 

 

defined as follows:  
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where 
( ) ( , )nJ x w

 is modified Jacobi polynomial which has 

been defined by using difference operator technique[3] (see 

Parihar and Patel [7] and also see Lahiri and Satyanarayana 

[4]-[6]).   Also it has been derived the hypergeometric 

representation of (1) as see[10]) 
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where 
: ;

: ,

p r u

q s vF  is a double hypergeometric function (see [1]). 

By considering the  limit 0w  ; 0, 0y    and 

0w  ; 0, 0x    and 0w  in (2), it leads to the 

following special cases 
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where 
( , ) ( , )nL x y 

 is Laguerre polynomial of two variables 

defined by Ragab,  S.F. [8]. 

By writing 0, 0y    and taking 0w in (2), it 

reduces to 

      
( ,0)

0
( ,0, ) ( )n n

w
Lt B x w L x 


                                (5) 

where ( )nL x
 is Laguerre polynomial, Rainville, E.D.[9]. 

By writing 0, 0x    and taking 0w in (2), it 

reduces to   

  
(0, )

0
(0, , ) ( )n n

w
Lt B y w L y 


              (6) 

where ( )nL y
 is Laguerre polynomial, Rainville, E.D.[9]. 

The generating function of the form given by A.K.Agarwal 

and H.L.Manocha[1] is useful for obtaining the bilateral and 

trilateral generating relations for the generalized 

hypergeometric functions and is as  
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II. CONVERGENCE FOR  

 

On account of (1), it can be obtained 
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Here ,n rA  is a polynomial and hence convergent. 

Now,     
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where 
, 1

,

lim
n r
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  .  Thus, it can be concluded that the 

given function is convergent if 1ws  i.e., 
1

w
s

  and 

divergent if 1ws  i.e., 
1

w
s

 . Moreover, if 1ws  , 

then it can be proceeded as follows: 

Let 
1

Re( 1 ) 0
2

y
n

w
      and by comparing the 

terms of the series.
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with the corresponding terms of the series 
1
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 , which 

is known to be convergent, the following can be obtained 
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 where ,lim n r
r

A 


 , is finite. Thus, 

Re( 1 ) 2 0
y

n
w

             and  ‘s’ is 

finite.  Hence, the function 
( , ) ( , , )nB x y w 

 is absolutely 

convergent on 1ws  when Re( 1 ) 0
y

n
w

    . 

So, as the function (1) is convergent, one may get the 

different type of integrals, integral transforms like Laplace, 

Millen and Eugler-Beta for the same. 

III. EXTENDED LINEAR GENERATRING 

RELATION 

  Now, we prove the following extended generating 

relation for the generalized hypergeometric function (1). 

 

Theorem 5 : 
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 (11)  

Proof :   The proof of (11) can be developed easily from (1) 

in the following way 

Consider the double series 

( , )

0 0

( , , ) ( )!

(1 ) (1 )

n

m m n

m n m n m n

m n B x y w t n m
u

n

 

 

 


   

  
 

  
 

 

 

and on replacing ‘n’ by ‘(n-m)’ and using Satyanarayana and 

others[10, pp.263(3.2)], we obtain  

, , 0

0

( , )

(1 ) (1 ) ! !

( )! u

! ( )!

r
n

r

n rn r v

n r v m n r v m

m

y
J x w w

w

r v

n r v t

m n r v m



 





    



 
 
 


 

 


  





 

( , ) ( , , )nB x y w 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019 

3579 

 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: B14450982S1119/2019©BEIESP 
DOI: 10.35940/ijrte.B1445.0982S1119 

 

 

Author-2 
Photo 

 

Author-3 

Photo 

 

 

0

( )!( 1)

( 1)

( , )

! ! !( )!(1 ) (1 )

m v

vm n r v m

n r m r v
n

r

n r

n r n r
u

n r m

y
t J x w w t

w

r v m n r m



 



   

 

  


  

 
 
 


   

 

 

0 0

1 1

( , )

(1 ) (1 ) !

1 ;

1;

m

n r m r

C n

m r

m n r n r

y
n r t J x w w

w
u

r

n r
F t

n r m



 

 

 

  

 
  

 


 

  
  

   

 

 

IV. EXPERIMENTAL RESULTS 

Case 1 :-

 

If  m = 0, the above result leads to 
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which is the known result by Satyanarayana and others[10, 

pp.263(3.2)] 

Case 2 :- If  m = 0 and by taking 0w  on both sides of 

the above result, we get the known result by 

S.K.Chatterjea[11] 
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V. CONCLUSION 

This work has tested the union of the function (1) and 

obtained extended generating relation with application as 

special cases.  By using the this extended linear generating 

relation, one may get the extended bilinear and bilateral 

generating associations through  classical and generalized 

hypergeometric functions.   By taking those bilateral 

generating functions,  obtain very easily the integrals of the 

product of the functions which are useful in some of the 

engineering problems and also in mathematical physics.   
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