
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

2953

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1377.0982S1119

Abstract: Software testing consumes the major portion of the

total efforts required for software development. This activity is

very time consuming and labor intensive. It is very hard to do

testing in optimal manner. In this paper a new approach is

proposed, which uses the nature inspired stochastic algorithm

called Cuckoo Search Algorithm (CSA) for the automatic

generation of test data for data flow testing. This approach

considers all def-use as test adequacy criteria. For assistance to

CSA in the state space a new fitness function is also proposed by

using the concept of dominator tree and branch distance in a

CFG. To validate the proposed approach experiments are carried

out on 10 benchmarked programs and findings are contrasted

with earlier work done in this domain. Further in order to prove

that proposed approach performs better than the above mentioned

approaches a statistical difference test (T-test) is also performed.

Index Terms: Software testing, Cuckoo Search Algorithm, Data

Flow testing, Dominance tree, Branch Distance.

I. INTRODUCTION

Software testing is one of the most critical steps in the life

cycle of product development and consumes the major

portion of the total efforts required in the development of

software. This phase includes the identification of defect as

many as possible. Software testing requires approximately

50% of total efforts. These efforts are time, money and man

power. Software testing can be partitioned into two classes:

functional and structural testing. Functional testing is also

referred to as black box testing whereas structural testing is

referred to as white box testing [1][2]. Structural testing has

better defect exposure capability compared to functional

testing [3]. Automatic generation of test cases can reduce

these efforts. Nature-inspired algorithms were used for this

purpose in recent years [4]. The main idea behind this

approach is automatic generation of test data, from the

program input domain that satisfies the testing adequacy

criterion. This testing adequacy criterion is represented in the

form of fitness function [5]. In automatic generation of test

cases most difficult task is the selection of test adequacy

criterion from various criteria available in the literature [6].

This research article presents a new Cuckoo Search

algorithm based approach for the automatic generation of test

data for data flow testing. For assistance to CSA in the state

space a new fitness function is also proposed by using the

concept of dominator tree and branch distance in a CFG. The

outcomes accomplished utilizing the proposed approach are

Revised Version Manuscript Received on 10, September 2019.

Sanjiv Sharma,Computer Science & Engineering, KIET Group of

Institutions, Ghaziabad, India.
S.A.M Rizvi, Computer Science, Jamia Millia Islamia University, New

Delhi, India.

Vineet Kumar Sharma,Computer Science & Engineering, KIET Group
of Institutions, Ghaziabad, India.

contrasted and the random search approach as well as

approaches proposed by the [7] [8] [9] on the 10

benchmarked programs [8] [3] [9] [10]. In the following

sections, the remaining paper is arranged. Section II provides

an overview of certain related work, section III gives

background knowledge of the proposed work, section IV

discusses the proposed approach, section V discuss the

results gain from experiments and last section VI gives

conclusive remarks on the work done and the results

achieved.

II. RELATED WORK

Automatic test case generation for a program is very

challenging task. In last decade various researches worked in

this field and used various meta heuristic based search

algorithm. Simulated annealing is used by [11] for pair-wise

testing , by [12] for automated program flow testing, by [13]

for test case generation for path testing. Genetic Algorithm

have been used in [14] for test case generation for path

testing, in [15] for objected oriented program using UML

modeling, in [16] for regression testing. For the prioritization

of test cases it is used in [17]. Particle Swarm Optimization is

used in [18][19][20] [21] for data flow testing. Ant Colony

Optimization is used [22][23][24]. Firefly optimization

algorithm have been used in [24][25] [26]. A CSA based

frame work is also proposed in [27].

III. BACKGROUND

A. Control Flow Graph

A control flow graph (CFG) is a graphical depiction of

computation flow of a program during the execution of the

program. CFG is a directed graph in which node represents

the basic blocks of the program and edge denotes the control

flow paths. There are two special nodes are also there, these

are entry node and exit node. Entry node is used to enter in

the CFG and exit node is used to leave the CFG. Fig. 1 shows

the CFG for the triangle classification program Fig. 2.

B. Data Flow Testing

Data Flow testing is one of the types of structural testing. A

structural testing requires access to internal structure of the

program. It center around the definition and uses of the

variables defined and used at different places in program.

This testing is used to examine the behavior of variables

throughout the program and ensure that there is no error

causes by the variables. Rapps [28] suggested various

Test Case Generation for Data Flow Testing

using Cuckoo Search Algorithm

Sanjiv Sharma, S.A.M. Rizvi, Vineet Kumar Sharma

TEST CASE GENERATION FOR DATA FLOW TESTING USING CUCKOO SEARCH ALGORITHM

2954

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1377.0982S1119

criterion for data flow testing and subsumption hierarchy Fig.

3. In these criteria all uses criteria is most effective. As per

Jorgensen [29] there may be following types of anomalies

due to improper utilization of variables in the program. First

is a variable is defined but never referenced in the program.

Second is a variable is referenced but never defined and last is

variable is defined multiple times before it is referenced. For

data flow testing a program is converted into a CFG. In the

CFG following types of nodes and paths are identified.

a) Definition Node: For a variable v, a node is called

definition node if variable v is is defined in the corresponding

node in the CFG.

b) Use Node: For a variable v, a node is called use node if

variable v is used in the statement corresponding to that node.

The use node may be either computation use node (c-use

node) or predicate use node (p-use node).

c) Definition use Path: For a variable v definition use path

(du path) is the path between the definition node v and the use

node of v.

d) Definition Clear Path: A definition clear path for a

variable v is a path where variable v is not defined again on

any node on that path.

Fig. 1: CFG for Triangle Program Classifier

For data flow testing, testing adequacy criteria may be

testing of all definition, testing of all uses and testing of all du

paths. In testing of all definition for a variable v such paths

are find out which include at least one use of variable v. In

testing of all uses for a variable v , at least one path is find out

for every definition of v to every use of v.

Fig. 2: Triangle Classifier Program

Fig. 3: Rapps Weyukar Subsumption Hierarchy [28]

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

2955

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1377.0982S1119

The test all du path is the most important data flow testing

technique. In this all du path for a variable v are tested. Table

1 shows the definition nodes and Table 2 shows the all du

paths of the triangle classification program Fig. 2.

Table 1: Node Types in the Example Program

Table 2: Definition to use paths in Example Program

C. Dominator Tree

In a CFG a node n1 dominates another node n2 if each path

from start to n2 includes n1 node. By using above concept a

dominance relationship can be established, which leads to a

dominator tree of the CFG [30]. Fig. 4 Shows the example

program's dominator tree.

Fig. 4: Dominator Tree for Triangle Classifier

Program

D. Cuckoo Search Algorithm

Cuckoo is one of those species, which used brood

parasitism for reproduction. Cuckoo lay its egg in such nests

in which host bird laid its egg recently and color and texture

of host bird’s egg’s resembles with cuckoo’s egg [31]. The

eggs laid by the cuckoo might be distinguished by the host

bird, in such case host birds either relinquish the nest and

make another nest elsewhere or push out cuckoo's eggs from

the nest. In a large portion of the cases, cuckoo eggs develop

earlier than host bird's eggs, and once cuckoo chicks emerge

from the egg, it forces other eggs out of the nest by following

its instinct. This cuckoo chick activity increases the chances

of survival and gives the host bird's larger share of food. This

behavior of cuckoo species is simulated by the [32] in 2009

and converted into an algorithm which may be used for

solution of optimization problems. In this algorithm a cuckoo

choose a nest randomly to lay its egg from a pool of nests and

lay only single egg at once. The nest which has highest

quality of eggs will be used in future generations. There is a

probability Pa [0,1] by which egg laid by the cuckoo is

identified by the host bird. In this algorithm at any particular

time of instance, eggs that are already in the nest represent the

solutions of the problem and egg of the cuckoo laid recently

represents the new solution. If the cuckoo solution is better

than among available solutions in the nest, worst solution

from the nest is replaced by the cuckoo solution. Fig. 5 shows

the CSA algorithm and Fig. 6 shows its corresponding flow

chart. From the above discussion it is clear that CSA is meta

heuristic based optimization algorithm. For simplicity in

CSA [32] used following three simple rules in the CSA

algorithm.

1. In a randomly selected nest, each cuckoo lays only one

egg at a time.

2. The nest having best quality of eggs from the set of

available nests will be used in future generation.

3. The host bird can identify the cuckoo's egg by

probability Pa [0, 1]. In this case, the host bird can leave the

nest or may get rid of the cuckoo egg.

X.-S. Yang and S. Deb [32] suggested that CSA quality

can be improved with Le vy flight rather than random

walking. Le vy flight is more beneficial for the exploration

of the state space because it has longer step length in long run

[33].

There is a foraging activity for various animals and insects

in nature. It can be demonstrate using Le vy flight. Le vy

flight is described as a random walk based on a heavily trailed

probability distribution. It is an improvement over brawny

movement. This behavior of Le vy flight is very beneficial in

exploration of the state space of various types of optimization

problems [34][35]. Let us say a new solution is represented

by X t 1 by a cuckoo i using Le vy flight using equation 1

can be written.

xi(t+1)= xi(t)+α⊕Le´vy(λ) (1)

Here α denotes the step size and its value must be positive

and can be scaled as per requirement of the problem of

TEST CASE GENERATION FOR DATA FLOW TESTING USING CUCKOO SEARCH ALGORITHM

2956

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1377.0982S1119

interest. In most of the cases its value is equal to 1. The

symbol ⊕ is to represent entry wise multiplication like in

PSO and a random walk is given by Le vy flight. The random

move is taken using the Le'vy distribution equation 2.

Le´vy ~ u = t- λ 1< λ≤3 2

Fig. 5: Algorithm of CSA

IV. PROPOSED APPROACH

The proposed approach works in two phases. In the

primary stage static analysis of the program under test is

done, designing of the fitness function, program is then

instrumented and finally def-use paths are extracted from the

program. In the second stage CSA is used to generate test

cases for the program. The designed algorithm accepts the

instrumented program in the form of CFG, CFG's dominant

tree, def-use paths to be taken as inputs. Fig. 7 shows the

proposed algorithm and Fig. 8 shows the corresponding flow

chart.

A. Fitness function

In the search based optimization techniques fitness

function is very important. It plays a very crucial role in and

used to provide the guidance to search based technique and

helps in exploration and exploitation of the problem’s state

space. This function depends upon nature of the problem and

technique used and directly affects the performance of the

technique used. The proposed fitness function is designed for

data flow testing and uses criteria of all uses as the criterion

for evaluating the data flow test. A du-path may not has a

concrete path between definition node and use node un the

CFG so it is considered as node to node function[36], so a

du-path coverage is converted into two goals. The first goal is

to reach the node of use and the second goal is to reach the

node of use. The covered du-path must not contain any killing

node. The proposed fitness function uses the concept of

dominance tree, branch distance and concept of closeness

level (CL).

For a du-path let u denotes the definition node and v

denotes node of use, the fitness value of test case (tc) for a

variable var is can be calculated using equation number 3 and

4.

Fig. 6: Flow Chart of CSA

nodes u and v respectively by the test case tc using

equation

number 5.

|fdom u˅v | denotes the nodes of dom u or dom v that

are covered more than one time.

|udom u˅v | denotes not covered notes of dom u and

dom(v).

 =

 = (5)

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

2957

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1377.0982S1119

B. Branch Distance

Branch distance is used to calculate the real path closeness

from the planned path [37]. Branch distance is calculated on

that node which has critical branch and it uses values of

variable and constants involved in the predicates used at that

node. Branch distance is a minimization function it gives the

value zero if the target node is reached and in other cases it is

calculated as shown in the Table 3 for different types of

predicates value [38]. The distance of the branch is usually

within the limit [0,1]. Modified branch distance bd(x,tc),

where x corresponds the target node and tc denotes the test

case in the current population is calculated using equation 5

[39].

V. EXPERIMENTAL SETUP AND ANALYSIS

The proposed approach is compared with the random test

data generator, Genetic algorithm based approach proposed

by the [7] and [8], and PSO based approach proposed by [9].

For the validation of the proposed approach widely used

benchmarked programs [8], [3],[10], [9] are used. Table 4

shows the details of these programs..

A. Performance Evaluation Parameters

For the comparative analysis of efficiency and

effectiveness of the CSA based approach are compared with

random search technique and [7] [8] [9] following three

evaluation parameters have been used and algorithm

parameters setting are shown in the table 5. For comparative

analysis of the above mentioned approaches, sizes of

populations considered are 10, 15, 20 and 30. Table 5,6,7 and

8 represents the analysis for different population sizes on the

benchmarked programs.

a) Average Number of Generation (ANG): This parameter

denotes the average number of generations required to

achieve 100% du-paths coverage. Although there is a cap of

103 iterations, is used for maximum number of generation for

termination condition if 100% du-path is not achieved.

b) Average Success Rate (ASR): This is used to illustrate

the possibility of reaching 100% du-path coverage per

experiment.

c) Average Percentage of Coverage Achieved (APC): This

parameter is used to denote the average of percentage of

du-path covered in each experiment.

Fig. 7: Algorithm for Proposed Approach

TEST CASE GENERATION FOR DATA FLOW TESTING USING CUCKOO SEARCH ALGORITHM

2958

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1377.0982S1119

Fig. 8: Flow Chart for the Proposed Approach

Table 3: Branch Distance Functions for Predicates

Table 4: Benchmarked Programs used in

Experimental Study

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

2959

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1377.0982S1119

B. Results&Discussion

Experimental results of the proposed work and the

approaches used by the [7], [8], [9] are shown in the tables

5-8 and figures 9-12 and following study questions are

answered here.

RQ1: What is the efficacy of the proposed approach in

achieving 100% data flow coverage and generation of test

cases?

From the experimental results of all the approaches it can

be concluded that CSA performs better than the other

approaches by using the new branch distance based fitness

function. Although for small size population (size 10) CSA is

not achieving 100% data flow coverage, but it gives 100%

coverage in rest three population sizes. In other approaches

random search’s performance is worst.

RQ2: How beneficial is the recommended fitness in CSA?

The CSA-based approach reached 100% data coverage in a

minimum of generation compared with other approaches on

benchmarked programs. For the calculation of average

number of generations 100 experiments are done for each

benchmarked program.

RQ3: What is the effectiveness of the proposed approach

in generation of optimized test suite?

For the approach based on CSA the average number of

generations required for the optimal test suite are minimum.

For the nested conditions CSA performs much better than

other approaches.

Table 5: Experimental Results for benchmarked programs

 Population Size =10

P
ro

g
ra

m
 N

o
.

Performance Metric

Average No. of Generation Average Success Rate in % Av. % of Coverage Achieved

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

1 232 635 268 297 316 100 88 89 89 90 100 93 95 94 96

2 261 828 456 385 293 100 86 87 88 89 100 92 93 95 95

3 197 308 301 275 237 100 87 88 89 91 100 91 94 95 96

4 98 197 105 87 104 94 85 86 88 92 99 89 92 96 97

5 16 55 37 19 21 100 88 88 87 90 100 93 94 91 95

6 32 354 260 94 47 96 87 89 89 91 98 92 93 96 96

7 13 33 51 26 19 94 85 86 90 92 98 94 95 96 97

8 264 984 463 371 317 95 89 90 89 91 99 95 94 96 96

9 183 756 458 398 241 100 88 89 90 90 100 94 94 96 96

10 13 27 15 17 22 100 86 88 90 91 100 93 94 95 96

Table 6: Experimental Results for benchmarked programs

 Population Size =15

P
ro

g
ra

m
 N

o
.

Performance Metric

Average No. of Generation Average Success Rate in % Av. % of Coverage Achieved

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

1 181 513 171 174 184 100 89 91 92 94 100 95 94 95 96

2 165 714 321 269 228 100 89 90 94 96 100 94 94 96 97

3 161 267 216 144 189 100 90 91 93 95 100 92 94 96 98

4 67 136 67 61 74 95 88 92 94 93 100 90 95 96 97

5 12 39 28 12 11 100 90 92 95 97 100 94 96 98 99

6 24 303 169 75 33 100 90 91 94 98 100 94 95 99 98

7 9 27 39 18 10 98 87 90 92 95 100 95 94 96 99

8 188 745 287 265 261 100 91 92 94 96 100 93 96 98 98

9 131 639 263 290 128 100 90 91 93 94 100 96 95 96 98

10 8 16 11 10 14 100 89 90 92 96 100 95 96 97 99

TEST CASE GENERATION FOR DATA FLOW TESTING USING CUCKOO SEARCH ALGORITHM

2960

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1377.0982S1119

Table 7: Experimental Results for benchmarked programs
 Population Size =20

P
ro

g
ra

m
 N

o
.

Performance Metric

Average No. of Generation Average Success Rate in % Av. % of Coverage Achieved
C

S
A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

1 97 453 172 148 117 100 92 93 96 95 100 96 95 97 98

2 87 548 146 143 128 100 91 93 94 96 100 96 97 97 99

3 98 198 167 121 109 100 93 93 94 95 100 95 96 98 98

4 38 63 58 42 43 100 90 92 94 96 100 92 95 97 99

5 7 18 11 9 7 100 93 94 95 100 100 96 97 99 100

6 19 296 106 67 28 100 92 94 95 95 100 94 98 98 98

7 4 23 20 13 5 100 90 92 93 94 100 96 96 97 97

8 147 689 241 230 221 100 94 95 95 94 100 95 99 98 97

9 69 523 278 212 87 100 94 94 94 95 100 95 97 96 98

10 3 10 8 6 4 100 95 96 100 96 100 96 100 98 99

Table 8: Experimental Results for benchmarked programs

 Population Size =30

P
ro

g
ra

m
 N

o
.

Performance Metric

Average No. of Generation Average Success Rate in % Av. % of Coverage Achieved

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

C
S

A

R
a

n
d

o
m

G
A

[7
]

G
A

 [
8

]

P
S

O
 [

9
]

1 54 311 69 74 67 100 95 96 97 98 100 98 97 98 99

2 36 237 127 93 68 100 94 95 96 100 100 97 98 99 100

3 59 103 96 84 74 100 95 97 98 100 100 96 99 99 100

4 27 29 26 25 26 100 94 97 98 100 100 97 98 99 100

5 4 8 7 6 7 100 95 96 100 98 100 99 97 100 99

6 11 147 43 36 28 100 95 97 98 100 100 97 98 99 100

7 2 13 9 7 5 100 94 97 100 100 100 98 99 100 100

8 86 364 123 121 98 100 97 97 99 100 100 97 99 99 100

9 35 269 131 120 69 100 94 96 100 100 100 96 98 100 100

10 2 6 5 3 100 100 99 100 100 100 100 99 100 100 100

Fig. 9.1 Fig. 9.2

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

2961

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1377.0982S1119

Fig. 9.3

Fig. 9.4

Fig. 9 : Average Number of Generations with respect to population Size

Fig. 10.1

Fig. 10.2

Fig 10.3

Fig. 10.4

Fig. 10: Average of % Coverage Achieved with respect to population Size

C. Statistical Analysis

To demonstrate the improved quality of the proposed

solution over other approaches used in the [7], [8], [9], a

statistical difference test called T-test has been used. In this

analysis average number of generation, average percentage of

coverage and average success rates are considered after

performing 100 repeated trials on each benchmarked

programs. For the T-test following three null hypotheses are

framed and T-test results are shown in the tables 9-11.

H1: The approach based on the CSA is not much different

than the random search and the methods used in the [7], [8],

[9] with respect to ANG.

H2: The approach based on the CSA is not much different

than the random search and the methods used in the [7], [8],

[9] with respect to APC.

TEST CASE GENERATION FOR DATA FLOW TESTING USING CUCKOO SEARCH ALGORITHM

2962

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1377.0982S1119

H3: The approach based on the CSA is not much different

than the random search and the methods used in the [7], [8],

[9] with respect to ASR.

For the null hypotheses H1, p value is smaller than 0.05 for

all programs except than program 4 in the CSA Vs Random

Search, so we reject the hypotheses and claims that

performance of CSA based approach is better than the

random search technique with respect to ANG. For CSA Vs

[7] value of p is smaller than 0.05 for eight programs, in this

case we can also rejects the hypotheses and claims that

performance of CSA based approach is better than the [7]

with respect to ANG. For CSA Vs [8] and CSA Vs [9] value

of p is smaller than 0.05 for seven programs, in this case we

can also rejects the hypotheses and claims that performance

of CSA based approach is better than the [8] and [9] with

respect to ANG.

Fig. 11.1

Fig. 11.2

Fig. 11.3

Fig. 11.4

Fig. 11: Average Success Rate with respect to Population Size

Table 9: Statistical T-test results for hypothesis H1 for

benchmarked programs

For the null hypotheses H2, p value is smaller than 0.05 for

all programs, for the CSA Vs Random Search and CSA Vs

[7], so we reject the hypotheses and claims that performance

of The approach based on CSA is better than random search

technique and [7] with respect to average coverage achieved.

For CSA Vs[8] value of p is smaller than 0.05 for nine

programs, in this case we can also rejects the hypotheses and

claims that performance of CSA based approach is better than

the [8] with respect average coverage achieved. For CSA Vs

[9] value of p is smaller than 0.05 for seven programs, in this

case we can also rejects the hypotheses and claims that

performance of CSA based approach is better than the[9]

with respect to APC.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

2963

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1377.0982S1119

Table 10: Statistical T Test results for hypothesis H2

for benchmarked programs

For the null hypotheses H3, p value is smaller than 0.05 for

all programs, for the CSA Vs Random Search and CSA Vs

[7], so we reject the hypotheses and claims that performance

of The approach based on CSA is better than random search

technique and [7] with respect to average success rates. For

CSA Vs[8] value of p is smaller than 0.05 for eight

programs, in this case we can also rejects the hypotheses and

claims that performance of CSA based approach is better than

the [8] with respect average success rates. For CSA Vs [9]

value of p is smaller than 0.05 for six programs, in this case

we can also rejects the hypotheses and claims that

performance of CSA based approach is better than the[9] in

majority of cases with respect to ASR

Table 11: Statistical T Test results for hypothesis H3

for benchmarked programs

VI. CONCLUSION

Use of nature inspired algorithms in the field of test case

generation for program/software is now getting attention

from the researcher community. Various nature inspired

algorithms GA, PSO, ACO etc are used for test case

generation and prioritization by considering different testing

adequacy criterion. Data flow testing received a very little

attention from the researchers. This paper uses Cuckoo

Search Algorithm to generate optimal set of test suite for data

flow testing. The test adequacy criterion selected here is

all-uses criterion. For the guidance of the proposed approach

in the search space a new objective function is designed

which uses concept the dominance path in the CFG and

branch distance. Experiments were carried out on 10

benchmarked programs to confirm the proposed approach

and results are compared with earlier work done in this

domain. For the comparison three performance parameters,

average number of generations, average percentage of

coverage achieved and average success rates are used.

Further in order to prove that proposed approach performs

better than the above mentioned approaches a statistical

difference test (T-test) is also performed. Results of this test

clearly indicate that proposed approach is significantly better

than the others. In future this new approach can be applied on

some industrial programs.

REFERENCES

1. B. Beizer, Software Testing Techniques (2Nd Ed.). New

York, NY, USA: Van Nostrand Reinhold Co., 1990.

2. A. P. Mathur, Foundations of Software Testing, 1st ed.

Addison-Wesley Professional, 2008.

3. C. Mao “Generating Test Data for Software Structural

Testing Based on Particle Swarm Optimization ” Arab. J.

Sci. Eng., vol. 39, no. 6, pp. 4593–4607, 2014.

4. S. Sharma S. A. M. Rizvi and V. K. Sharma “Research

on use of Nature Inspired Algorithms in Software

Testing ” Int. J. Innov. Technol. Explor. Eng. vol. 8 no.

11, pp. 3446–3452, 2019.

5. M. Harman “Software Engineering Meets Evolutionary

Computation ” Computer Long. Beach. Calif . vol. 44

no. 10, pp. 31–39, Oct. 2011.

6. S. Jiang, J. Chen, Y. Zhang, J. Qian, R. Wang, and M.

Xue “Evolutionary approach to generating test data for

data flow test ” IET Softw. vol. 12 no. 4 pp. 318–323,

2018.

7. M. R. Girgis “Automatic Test Data Generation for Data

Flow Testing Using a Genetic Algorithm ” J. Univers.

Comput. Sci., vol. 11, no. 6, pp. 898–915, 2005.

8. A. S. Ghiduk, M. J. Harrold, and M. R. Girgis “Using

genetic algorithms to aid test-data generation for

data-flow coverage ” Proc. - Asia-Pacific Softw. Eng.

Conf. APSEC, pp. 41–48, 2007.

9. S. S. Kumar D. K. Yadav and D. A. Khan “An Adaptive

PSO Algorithm Based Test Data Generator for Data-Flow

Dependencies using Dominance Concepts ” 2016.

10. S. Jiang J. Shi Y. Zhang and H. Han “Automatic test
data generation based on reduced adaptive particle swarm

optimization algorithm ” Neurocomputing vol. 158 pp.

109–116, 2015.

11. M. Patil and P. J. Nikumbh “Pair-wise Testing Using

Simulated Annealing ” Procedia Technol. vol. 4 pp.

778–782, 2012.

12. N. Tracey J. Clark and K. Mander “Automated program

flaw finding using simulated annealing ” Proc. 1998 ACM

SIGSOFT Int. Symp. Softw. Test. Anal. ISSTA 1998, pp.

73–81, 1998.

13. N. Mansour and M. Salame “Data Generation for Path

Testing ” pp. 121–136, 2004.

14. P. B. Nirpal and K. V Kale “Using Genetic Algorithm for
Automated Efficient Software Test Case Generation for

Path Testing ” Int. J. Adv. Netw. Appl. vol. 915 no. 6, pp.

911–915, 2011.

15. M. Prasanna, K. R. Chandran, and K. Thiruvenkadam,

“Automatic test case generation for UML collaboration

diagrams ” IETE J. Res. vol. 57 no. 1 pp. 77–81, 2011.

16. A. Kaur and S. Goyal “a Genetic Algorithm for
Regression Test Case Prioritization Using Code

Coverage ” Int. J. Comput. Sci. Eng. vol. 3 no. 5 pp.

1839–1847, 2011.

TEST CASE GENERATION FOR DATA FLOW TESTING USING CUCKOO SEARCH ALGORITHM

2964

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B13770982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1377.0982S1119

17. W. Jun Z. Yan and J. Chen “Test Case Prioritization

Technique Based on Genetic Algorithm ” in 2011

International Conference on Internet Computing and

Information Services, 2011, pp. 173–175.

18. S. Singla D. Kumar H. M. Rai and P. Singla “A hybrid

PSO approach to automate test data generation for data

flow coverage with dominance concepts ” Int. J. Adv. Sci.

Technol., vol. 37, pp. 15–26, 2011.

19. N. Nayak and D. P. Mohapatra “Automatic test data

generation for data flow testing using particle swarm

optimization ” Commun. Comput. Inf. Sci. vol. 95 CCIS

no. PART 2, pp. 1–12, 2010.

20. S. Varshney and M. Mehrotra “Search Based Software

Test Data Generation for Structural Testing: A

Perspective ” SIGSOFT Softw. Eng. Notes vol. 38 no. 4

pp. 1–6, Jul. 2013.

21. S. Kumar D. K. Yadav and D. A. Khan “An accelerating
PSO algorithm based test data generator for data-flow

dependencies using dominance concepts ” Int. J. Syst.

Assur. Eng. Manag., vol. 8, no. 11, pp. 1534–1552, 2017.

22. A. S. Ghiduk “A New Software Data-Flow Testing

Approach via Ant Colony Algorithms ” Univers. J.

Comput. Sci. Eng. Technol., vol. 1, no. 1, pp. 64–72,

2010.

23. S. Biswas, M. S. Kaiser, and S. A. Mamun “Applying Ant

Colony Optimization in software testing to generate

prioritized optimal path and test data ” in 2015

International Conference on Electrical Engineering and

Information Communication Technology (ICEEICT),

2015, pp. 1–6.

24. C. Mao, L. Xiao X. Yu and J. Chen “Adapting ant

colony optimization to generate test data for software

structural testing ” Swarm Evol. Comput. vol. 20 pp. 23–

36, 2015.

25. R. K. Sahoo D. P. Mohapatra and M. R. Patra “A Firefly

Algorithm Based Approach for Automated Generation

and Optimization of Test Cases ” Int. J. Comput. Sci.

Eng., vol. 4, no. 8, pp. 1–6, 2016.

26. R. Sharma and A. Saha “Optimization of object-oriented

testing using firefly algorithm ” vol. 2667 no. October

2017.

27. S. Sharma, S. A. M. Rizvi, and V. Sharma “A Framework

for Optimization of Software Test Cases Generation using

Cuckoo Search Algorithm ” in 2019 9th International

Conference on Cloud Computing, Data Science &

Engineering (Confluence), 2019, pp. 282–286.

28. S. Rapps and E. J. Weyuker “Selecting Software Test

Data Using Data Flow Information ” IEEE Trans. Softw.

Eng., vol. SE-11, no. 4, pp. 367–375, 1985.

29. P. C. Jorgensen, Software Testing Fourth Edition A

Craftsman’s Approach. 2014.

30. T. Lengauer and R. E. Tarjan “A Fast Algorithm for
Finding Dominators in a Flowgraph ” ACM Trans.

Program. Lang. Syst., vol. 1, no. 1, pp. 121–141, Jan.

1979.

31. R. B. Payne and M. D. (Michael D. Sorenson, The

cuckoos. Oxford University Press, 2005.

32. X.-S. Yang and S. Deb “Cuckoo Search via Levey

Flights ” 2009 World Congr. Nat. Biol. Inspired Comput.

(NaBIC 2009), pp. 210–214, 2009.

33. R. A. Vazquez “Training spiking neural models using
cuckoo search algorithm ” 2011 IEEE Congr. Evol.

Comput. CEC 2011, pp. 679–686, 2011.

34. M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Eds.,

Lévy Flights and Related Topics in Physics, 1st ed.

Springer-Verlag Berlin Heidelberg, 1995.

35. M. F. Shlesinger “Search & Research ” Nature vol. 19

no. 3, pp. 27–28, 2006.

36. J. Wegener A. Baresel and H. Sthamer “Evolutionary

test environment for automatic structural testing ” Inf.

Softw. Technol., vol. 43, no. 14, pp. 841–854, 2001.

37. B. Korel “Automated Software Test Data Generation ”
IEEE Trans. Softw. Eng., vol. 16, no. 8, pp. 870–879,

Aug. 1990.

38. N. Tracey, J. Clark, J. McDermid, and K. Mander “A

Search-Based Automated Test-Data Generation

Framework for Safety-Critical Systems ” in Systems

Engineering for Business Process Change: New

Directions: Collected Papers from the EPSRC Research

Programme, P. Henderson, Ed. London: Springer London,

2002, pp. 174–213.

39. S. Varshney and M. Mehrotra “Search-Based Test Data

Generator for Data-Flow Dependencies Using Dominance

Concepts Branch Distance and Elitism ” Arab. J. Sci.

Eng., vol. 41, no. 3, pp. 853–881, 2016.

 AUTHORS PROFILE

Sanjiv Sharma is an assistant professor at KIET Group

of Institutions, Ghaziabad. He received his B.Tech. degree

from MMMEC, Gorakhpur affiliated to AKTU, Lucknow,

India in 2008, M.Tech degree from Shobhit University

Meerut, India in 2014, and pursuing Ph.D. from Jamia

Milllia University, New Delhi, India. His research interests include software

testing and nature inspired algorithm. One can connect Sanjiv Sharma on

martin.mmmec@gmail.com.

S.A.M. Rizvi is a professor and former HoD at Jamia

Millia University, New Delhi India. He received his

Ph.D from Dr. R. M. L. Avadh University, India, in

1996. His research interests are Knowledge Engineering,

MIS, Automation, Algorithms and Bioinformatics. One can connect SAM

Rizvi on samsam_rizvi@yahoo.com.

Vineet Kumar Sharma is a professor and HoD at KIET

Group of Institutions, Ghaziabad, India. He received his

Ph.D. from Jamia Millia Islamia University, New Delhi,

India in 2012. His research interest are algorithms, Software

Engineering. One can connect Vineet Kumar Sharma on

vineet.sharma@kiet.edu.

mailto:martin.mmmec@gmail.com
mailto:samsam_rizvi@yahoo.com

