Modal Behavior Analysis of 220kV Transmission Line Tower using SAP 2000 in Wind Zones I and V

Sudheer Choudari, P. S. V. Ramana Rao, K. Madhava Rao

Abstract: For every developing country, Electrical system plays a crucial role not only in developing the Nation’s economy but also in survival of human beings. The present study deals with a typical 3 Dimensional 220 kV double circuit transmission-line tower is modelled using Sap 2000. The loading conditions considered are normal, earthwire broken and conductor broken conditions. The wind zones I and V are considered since wind zone I has the lowest wind speed 33m/s and for wind zone V having wind speed 50 m/s (Visakhapatnam). All the other parameters like steel sections, height of tower and base width of tower is kept constant for studying the results after the analysis is done. After analysis of tower corresponding wind zones, the results are compared for maximum axial positive and negative deflections, reactions at the supports, different mode shapes and time period, modal mass participation factors, modal participation factors for modal stiffness and frequencies, Eigen value.

Index Terms: Modal stiffness, frequencies, modal participation factors, Eigen value and deflections.

I. INTRODUCTION

For the production of electricity, it requires a source of fossil fuels, water, wind and the temperature. With the above sources, power can be generated with use of turbines. After production, this power should be distributed for different places in the country. Since power capacity is high, transmission line tower is used for distribution. The distribute power can be utilized for different purposes depending on the usage.

1.1 Transmission line tower: Transmission tower lines are life-line structures. Electricity can be supplied to various regions of the nation by using Transmission line tower. Tall structures with relatively small cross section with a large ratio between height and maximum base width are known as towers. These are used when lines are to be supported at longer distances.

1.2 SAP 2000: SAP stands for Structural Analysis Program. Static, dynamic and finite element analysis of structures can be done using software. It is a non linear computer program. In this software analysis, mode shapes, frequencies, Eigen values, modal mass participation factors, modal stiffness can be found out with respect to time period.

1.3.1 MODELLING

Modal analysis is performed in SAP 2000 a Non linear computer program. The wind force acting on the tower is considered as Equivalent static force applied at the joints. The tower elements are modelled using joint coordinates and joint to joint connections. Initially create the grids in 3 mutually perpendicular directions. Then join corresponding joint to joint connections in sequential order until you get the structure. Calculated loads can be applied at the corresponding joints.

1.4: Tower Details: Tower Height considered is 33.52 m, Base width of the Tower is 5.5966 m, Bottom Crossarm width is 10.31 m, Middle crossarm width is 9.26 m, Top Crossarm width is 8.86 m, ISA Angle sections are considered.

II. TOWER MODELLING

For building the Tower, the steps to be followed are:

2.1: Tower Configuration: The type of Tower selected was Suspension and self-supporting tower. Four-legged tower with double circuited was used. The model of the tower bracings is Pratt bracing system. Since this is the most widely used. The height of tower is calculated as per CBIP Manual and base width is taken as 1/6th of height of tower. The sections used for the tower are all mild steel angles confirming to IS 2062.

2.2: Load calculation: Loads are calculated as per IS 802: 1995, IS 875: Part III, CBIP manual. Each load is applied at the nodes or joints only. Loading conditions are Wind load, Normal loading condition, Broken wire condition and broken conductor.

2.3: Modelling: Tower can be modelled using joint coordinates and joint to joint connections. Initialise create the grids in 3 mutually perpendicular directions. Then join corresponding joint to joint connections in sequential order until you get the structure. Calculated loads can be applied at the corresponding joints.

2.4: Tower Details: Tower Height considered is 33.52 m, Base width of the Tower is 5.5966 m, Bottom Crossarm width is 10.31 m, Middle crossarm width is 9.26 m, Top Crossarm width is 8.86 m, ISA Angle sections are considered.

III. MODAL ANALYSIS

Modal analysis is performed in SAP 2000 a Non linear computer program. The wind force acting on the tower is considered as Equivalent static force applied at the joints. The tower elements are modelled using 3 – D frame elements. After running the analysis with loads and load combinations with respect to wind zones I & V, the parameters taken into consideration for comparison are Axial displacements, support reactions, modal mass participations factors for both axial displacements and rotational displacements, modal participation factors for modal stiffness, modal frequencies and time periods. Figure 1 represents 3 – D model tower with 5.5966 m Base width. Figure 2 – 6 represents Mode shapes of tower along with time periods in Zone I. Figure 7 – 10 represents Mode shapes of tower along with time periods in Zone V.
Modal Behavior Analysis of 220kV Transmission Line Tower using SAP 2000 in Wind Zones I and V

Figure 1: 3-D model Tower with 5.59m Base Width

Figure 2: Mode shape with Period 0.21108

Figure 3: Mode shape with Period 0.20932

Figure 4: Mode shape with Period 0.07637

Figure 5: Mode shape with Period 0.07373

Figure 6: Mode shape with Period 0.20932

Figure 7: Mode shape with Period 0.09254

Figure 8: Mode shape with Period 0.07637

Figure 9: Mode shape with Period 0.07373
IV. ANALYSIS OF RESULTS

With the help of Sap 2000, analysis was done using Run analysis Command. The following parameters are considered.

Comparison of Axial displacements: Maximum positive and negative axial displacements along the three mutually perpendicular directions in wind zones I & V are presented in Table 2 & 3 and represented in Figures 11 to 14.

Table 1: Maximum Positive Axial Deflections

<table>
<thead>
<tr>
<th>Direction</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.915</td>
<td>13.343</td>
<td>306.348</td>
</tr>
<tr>
<td>V</td>
<td>5.691</td>
<td>20.91</td>
<td>474.639</td>
</tr>
</tbody>
</table>

Table 2: Maximum Negative Axial Deflections

<table>
<thead>
<tr>
<th>Direction</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-39.04</td>
<td>-14.72</td>
<td>-0.13</td>
</tr>
<tr>
<td>V</td>
<td>-39.04</td>
<td>-22.27</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

Comparison of Support Reactions: Maximum support reactions Fx, Fy, Fz, Mx, My, Mz are compared in two wind zones are shown in Figures 15,16,17 and tabulated in Table 3.

Table 3: Maximum Support reactions

<table>
<thead>
<tr>
<th>Direction</th>
<th>I</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fx (N)</td>
<td>140810.3</td>
<td>210936</td>
</tr>
<tr>
<td>Fy (N)</td>
<td>1065166</td>
<td>1626790</td>
</tr>
<tr>
<td>Fz (N)</td>
<td>-136991</td>
<td>-212382</td>
</tr>
<tr>
<td>Mx (N-m)</td>
<td>2002.61</td>
<td>2658.7</td>
</tr>
<tr>
<td>My (N-m)</td>
<td>156.74</td>
<td>245.98</td>
</tr>
<tr>
<td>Mz (N-m)</td>
<td>736.93</td>
<td>1122.85</td>
</tr>
</tbody>
</table>
Modal mass participation factors: Depending on the mode shape and time period, modal mass participation factors for displacement can be found out and is presented in Figures 18 to 20 and is represented in Table 4.

Table 4: Modal Mass Participation factors for Displacement

<table>
<thead>
<tr>
<th>Mode No</th>
<th>Period</th>
<th>Ux</th>
<th>Uy</th>
<th>Uz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.211</td>
<td>0.59</td>
<td>4.56E-17</td>
<td>0.000271</td>
</tr>
<tr>
<td>2</td>
<td>0.2093</td>
<td>0.00027</td>
<td>1.11E-17</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>0.093</td>
<td>1.50E-1</td>
<td>4.08E-08</td>
<td>2.38E-15</td>
</tr>
<tr>
<td>4</td>
<td>0.076</td>
<td>0.27</td>
<td>8.23E-16</td>
<td>1.37E-07</td>
</tr>
<tr>
<td>5</td>
<td>0.074</td>
<td>2.04E-07</td>
<td>1.61E-17</td>
<td>0.27</td>
</tr>
<tr>
<td>6</td>
<td>0.0544</td>
<td>3.58E-1</td>
<td>0.02899</td>
<td>9.23E-14</td>
</tr>
<tr>
<td>7</td>
<td>0.0541</td>
<td>2.34E-1</td>
<td>0.000115</td>
<td>2.89E-14</td>
</tr>
<tr>
<td>8</td>
<td>0.0523</td>
<td>0.00016</td>
<td>4.06E-15</td>
<td>8.71E-09</td>
</tr>
<tr>
<td>9</td>
<td>0.052</td>
<td>2.20E-09</td>
<td>6.83E-18</td>
<td>6.74E-05</td>
</tr>
<tr>
<td>10</td>
<td>0.051</td>
<td>1.52E-1</td>
<td>2.13E-05</td>
<td>4.47E-15</td>
</tr>
<tr>
<td>11</td>
<td>0.0502</td>
<td>7.40E-1</td>
<td>1.08E-07</td>
<td>4.76E-15</td>
</tr>
<tr>
<td>12</td>
<td>0.044</td>
<td>0.079</td>
<td>1.24E-13</td>
<td>0.000013</td>
</tr>
</tbody>
</table>

Modal stiffness: Modal stiffness also depends on time period. As the time period is decreasing the value of modal participation factors for modal stiffness increases as shown in Figure 21 and is tabulated in Table 5.

Table 5: Modal Participation factors for Modal Stiffness

<table>
<thead>
<tr>
<th>Mode No</th>
<th>Period</th>
<th>Modal Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.211077</td>
<td>886.09</td>
</tr>
<tr>
<td>2</td>
<td>0.209322</td>
<td>901.01</td>
</tr>
<tr>
<td>3</td>
<td>0.092535</td>
<td>4610.45</td>
</tr>
<tr>
<td>4</td>
<td>0.076370</td>
<td>6768.8</td>
</tr>
<tr>
<td>5</td>
<td>0.074052</td>
<td>13512.39</td>
</tr>
<tr>
<td>6</td>
<td>0.054370</td>
<td>14453.53</td>
</tr>
<tr>
<td>7</td>
<td>0.053730</td>
<td>13512.39</td>
</tr>
<tr>
<td>8</td>
<td>0.052276</td>
<td>14453.53</td>
</tr>
<tr>
<td>9</td>
<td>0.052276</td>
<td>14476.05</td>
</tr>
<tr>
<td>10</td>
<td>0.050693</td>
<td>15362.41</td>
</tr>
<tr>
<td>11</td>
<td>0.050231</td>
<td>15646.39</td>
</tr>
<tr>
<td>12</td>
<td>0.043515</td>
<td>20848.79</td>
</tr>
</tbody>
</table>
Comparision of Frequency, circular frequency and Eigen value: Based on the mode number and time period, the frequency, circular frequency and Eigen values varies as shown in Figures 22,23,24 and the values are in Table 6.

Table 8: Modal Periods and frequencies

<table>
<thead>
<tr>
<th>Mode No</th>
<th>Period</th>
<th>Frequency (cyc/s)</th>
<th>Circular Frequency (rad/s)</th>
<th>Eigen Value (rad²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.211077</td>
<td>4.7373</td>
<td>29.767</td>
<td>886.09</td>
</tr>
<tr>
<td>2</td>
<td>0.209322</td>
<td>4.7773</td>
<td>30.017</td>
<td>901.01</td>
</tr>
<tr>
<td>3</td>
<td>0.092535</td>
<td>10.807</td>
<td>67.9</td>
<td>4610.4</td>
</tr>
<tr>
<td>4</td>
<td>0.07637</td>
<td>13.094</td>
<td>82.273</td>
<td>6768.8</td>
</tr>
<tr>
<td>5</td>
<td>0.073731</td>
<td>13.563</td>
<td>85.218</td>
<td>7262.1</td>
</tr>
<tr>
<td>6</td>
<td>0.054364</td>
<td>18.395</td>
<td>115.58</td>
<td>13358</td>
</tr>
<tr>
<td>7</td>
<td>0.054052</td>
<td>18.501</td>
<td>116.24</td>
<td>13512</td>
</tr>
<tr>
<td>8</td>
<td>0.052263</td>
<td>19.134</td>
<td>120.32</td>
<td>14454</td>
</tr>
<tr>
<td>9</td>
<td>0.052222</td>
<td>19.149</td>
<td>120.32</td>
<td>14476</td>
</tr>
<tr>
<td>10</td>
<td>0.050693</td>
<td>19.726</td>
<td>123.95</td>
<td>15362</td>
</tr>
<tr>
<td>11</td>
<td>0.050231</td>
<td>19.908</td>
<td>125.09</td>
<td>15646</td>
</tr>
<tr>
<td>12</td>
<td>0.043515</td>
<td>22.981</td>
<td>144.39</td>
<td>20849</td>
</tr>
</tbody>
</table>

V. CONCLUSION

✓ The maximum positive deflection along Z - direction in zone I is observed to be increased by 54.93% in Zone V. where as in X direction it was 95.23% and along y direction it was 56.71%.
✓ The maximum Negative deflection along Y - direction in zone I is observed to be negatively increased by 51.29% in Zone V. where as in X and Z direction it remains same.
✓ The support reactions Fx in zone I is observed to be increased by 49.80% in zone V. where as in Fy by 52.72%, Fz by 55.03%, Mx by 32.76%, My by 56.93% and Mz by 52.36%.
✓ Frequency, circular frequency, eigen value and modal participation factor for modal stiffness increases with the decreases in time period.
✓ The modal mass participation factor for displacements are zero for some of mode numbers due to fact that the specific mode shape will exhibit torsion effect.

REFERENCES

Modal Behavior Analysis of 220kV Transmission Line Tower using SAP 2000 in Wind Zones I and V


AUTHORS PROFILE

Mr. Sudheer Choudari, Assistant Professor, Department of Civil Engineering, Centurion University of Technology & Management. Highest Qualification: ME (Structural Engineering), sudheerchoudari@cutmap.ac.in

Dr. P. S. V. Ramanarao, Professor, Department of Mechanical Engineering, Centurion University of Technology & Management. Highest Qualification: PhD (Bio Fuels), drpsvrao@cutmap.ac.in

Mr. K. Madhava Rao, Associate Professor, Department of Electrical Engineering, Centurion University of Technology & Management. Highest Qualification: M.Tech (High Voltage Engineering), kmadhavarao@cutmap.ac.in