Design and Development of Wall Climbing Swarm Robot

Rahul Ranjan, Humsheer Sandhu, A. Suvarnamma

ABSTRACT--- With the advent of construction technologies, there has been a rise in the number of tall buildings. At such heights, it is dangerous and difficult for human life to reach. So, the design and control of the movement of a wall climbing swarm robot which uses adhesion force which enables it to climb multiple robots at same time on vertical surface with the swarm intelligence in order to reach high place. The design and control of robot is such that it can be operated for any place like vertical and horizontal. A wireless communication link is used with swarm technology that perform the numbers of multiple robots which works together to complete task With simultaneous communication between two robots, it tends to ease the work load and improves the time used in rescue or surveillance operations. The three major advantages of Robotic approach are that it is scalable, flexible and robust.

Keywords – Robot, climber, (glass/wall), locomotion, adhesion force, communication link, swarming

I. INTRODUCTION

Women Wall climbing swarm robot (WCSR) are exceptionally versatile robot that can be utilized as part of assortment of use like review and support of surfaces for distinguishing splits painting of ocean vessel surfaces, oil tanks, glass sections of heighted buildings etc. To build the operational productivity and ensuring human well-being and security in dangerous task make this robot a valuable gadget. These frameworks are basically embraced in such conditions where human administration is extremely costly and hazardous because of the risky and unsafe environment. This robot has light weight and large payload so that reduce adhesion force to carry components at the time of navigation and surveillance. This autonomous robot can be used to accomplish all needs of military, police and personal security. For mechanical stability a centrifugal impeller with position above the robot produces and maintains low pressure area in isolation for adhesion force to stick on the vertical wall.

The idea of swarming is based on the view that sometimes it is impossible or quite difficult to complete a task by a single person. In such cases, there is a need of a team or group of members that can collaboratively work and make the work of that person comparatively easy.

Swarm Robotics has varied applications in all fields like communication, military services, civil engineering, building construction etc.

II. BLOCK DIAGRAM

Master Fig 1
Slave Fig 2

III. DESIGN AND ANALYSIS OF WALL CLIMBING SWARM ROBOT

A. CAD Modeling

Motor Specification:

- 60 RPM Compact DC Gear Motor of Side shaft 37 mm diameter is suitable for small robots.
- Voltage range of 4 -12V
- Stall torque: 3.3Kg-cm at stall current of 1.3Amp.
- Diameter of shaft: 6mm
- RPM of motor: 60 at 12V voltage
- Material of brush: Carbon
- Motor weight: 100gm
Table 1: Parameter Calculation of the Motor

<table>
<thead>
<tr>
<th>Operating Speed</th>
<th>RPM</th>
<th>Torque</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15sec/60°</td>
<td>60</td>
<td>1.52Nm</td>
<td>4.8V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8V</td>
<td>0.84kw</td>
</tr>
</tbody>
</table>

Design robot using centrifugal impellers is done in solid works software.

The Cad models for Wall climbing robot

![Cad design of robot](image1)

![Belt with dimensions](image2)

IV. FORCE ANALYSIS

The required suction constrain is dissected from diagram as shown below. From it, we can examine all driving forces falling on the wall and slant of the wall shifts from 0 so that implies parallel with the ground to 90 degree which is vertical with the ground.

![Diagram of all forces act on slanted wall](image3)

That figure 4 comprises of total force that are vacuum, reaction, robot weight and frictional. The force of robot weight are depends upon mass (M) and acceleration due to gravity (g=9.81m/sec) which has downward path.

[1] The two equilibrium equations as per the Newton’s law:

\[\sum F_x = 0; \]
\[\sum F_y = 0; \]

From (1) and (2), we know that sum of the X axis and the sum of the Y axis with given forces are zero at balance. The force of vacuum required to catch the robot can be calculated using the following equations.

\[P_{\text{vacuum}} = P_{\text{atmosphere}} - P_{\text{absolute}} \] \[(3) \]

Where
- \(P_{\text{vacuum}} \) - vacuum pressure
- \(P_{\text{atmosphere}} \) - pressure of atmosphere
- \(P_{\text{absolute}} \) - absolute pressure

As we know,

\[\text{Force} = \text{Pressure} \times \text{Area} \]

Therefore

\[F_{\text{vacuum}} = P_{\text{atmosphere}} A_o - P_{\text{absolute}} A_i \] \[(4) \]

As,

\(F_{\text{vacuum}} \) - force of vacuum need to catch the robot.

\(A_o \) - outer circle part of impeller
\(A_i \) - inner circle part of impeller.

The frictional force is given by:

\[u(V_{\text{vacuum}} + Mg \cos) = Mg \sin \theta \] \[(5) \]

Where
- ‘\(u \)’ - the coefficient of friction and
- ‘\(g \)’ - acceleration due to gravity.

From equation (5), we will get the friction force

\[F_{\text{friction}} = \sum M = -hF_{\text{Gravity}} + r(F_{\text{Thrust}} + F_{\text{Vacuum}}) = 0 \] \[(5) \]

![Static force analysis in horizontal Plane](image4)

\[\text{F\text{traction}} = \text{F\text{Friction}} + \text{F\text{Gravity}} \]

Assuming the robots are going up and gravitational force is acting through \(y \) direction.

A. Mechanism for Adhesion

It has a power of generator that comprises a first motor along with a rotor and the cover to take the air out.

B. Tracked belt mechanism

A continuous movement arrangement is made of the track belt of the robot. These are not only positive transfer but also can track relative movement.

Working circuit of wall climbing swarming locomotion

In the project, a server-client concept was used to perform the given task. Therefore, for creating a 'Swarm' of robots the size of the client device was decided to be as small as possible to include robustness, scalability and flexibility to the project. It should also be well equipped with abilities such as sensing, computing and communicating with the external environment to smartly perform the task assigned by the server.

Fig 6: Static analysis in vertical plane

\[\begin{align*}
F_{\text{traction}} = & F_{\text{friction}} + F_{\text{gravity}} \sum M \\
F_{\text{traction}} = & F_{\text{gravity}} + F_{\text{friction}} + F_{\text{vacuum}}
\end{align*} \]

VI. CONCLUSIONS

This paper presents wall climbing swarm robot technology, which moves on vertical as well as horizontal surfaces. A dynamic model was used to build, analyze and test the mechanism of robot. Two swarm models, that is swarm I, and swarm II were fabricated and their exhibitions of swarming were approved tentatively in the lab situations and additionally the genuine one.

The applications and advancement of this robot can be used in areas of defense as well as architecture restoration sites. Other applications include bomb disposal squad, mine handling, information provider in hostage places. With more research and proper modification, it can be made cost effective for commercial use.

REFERENCES