GIS Based Assessment and Mapping of Noise Pollution in Coimbatore District

S.D.Anitha SelvaSofia, Divyabharathi, S. Backya, P, Swetha, S, Balamithra. A

Abstract: A standout amongst the most unwanted symptoms of inappropriately arranged industrialization is the contamination of our condition and resulting degeneration of the personal satisfaction. Commotion contamination is a huge ecological issue in numerous quickly urbanizing zones. This issue is legitimately not perceived regardless of the way that it is relentlessly developing in creating nations. Commotion discharged in nature from each source is a bothersome result of our cutting edge lifestyle and is heightening at a high rate. In the previous thirty years, commotion in all territories, particularly in urban zones has been expanding quickly. Coimbatore City, known for its quick urbanization and industrialization, is appearing disturbing ascent in the commotion levels and consequently, an endeavor has been made to contemplate the ecological clamor levels in Coimbatore city. This investigation reports the normal commotion levels estimated at different areas inside the city containing business, private, mechanical and quiet zones. An Advanced Sound Dimension Meter (Make: Larson and Davis) was utilized for the examination. Every one of the estimations were taken amid the pinnacle hours and under standard conditions. Different Commotion Contro Control measures were recommended for the hazard zones.

Keywords: Noise Pollution, GIS, Hotspot.

I. INTRODUCTION

Sound is a type of vitality which goes as waves. The waves are made when atoms in air experience pressure and rarefaction then again. Sound waves move outward from the vibrating source. Subsequently, they debilitate with the separation from the source. The human ear is touchy to the recurrence scope of 20 Hz to 20000 Hz. Sounds with recurrence underneath 20 Hz are not identified by the human ear and are called infrasonic though sounds having recurrence over 20000 Hz is called ultrasound. Frequencies between 2000 Hz and 8000 Hz are viewed as most irritating while those beneath 500 Hz or over 10000 Hz are less irritating. Clamor is viewed as an ordinary marvel. Activity plans and ensuing acoustical arranging are not truly considered in numerous pieces of the world. This will assist people in general with realizing the dimensions of clamor that they are presented to and to create components for decreasing the commotion to allowable dimensions. A geographic data framework (GIS) is a PC based data framework that empowers the information, the executives, forms. Since clamor has some mental and social ramifications and influences the prosperity and personal satisfaction in our condition, there is a requirement for commotion to be imagined and appeared at influenced parties. GIS can encourage such presentation and perception and can prompt discoveries which may be important to advise framework arranging, guarantee profitability in different work environments or think about, and to execute or uphold consistency to any current commotion guidelines.

Coimbatore City, known for its fast urbanization and industrialization, is appearing disturbing ascent in the commotion levels and thus, an endeavor has been made to ponder the ecological clamor levels in Coimbatore city. This examination reports the normal commotion levels estimated at different areas inside the city including business, private, modern and quiet zones. A Computerized Sound Dimension Meter (Make: Larson and Davis) was utilized for the investigation. Every one of the estimations were taken amid the pinnacle hours and Non top hours under standard conditions. The deliberate clamor levels were contrasted and the Commotion Guidelines prescribed by the Clamor Contamination (Guideline and Control) Tenets, 2000 and the commotion chance zones were recognized.

II. OBJECTIVES

The objectives of the present study are as follows,

1. To assess and compare the noise levels at residential, commercial and silent zones in Coimbatore city with respect to prescribed noise limits mentioned in CPCB, India
2. To analyze the impact of traffic volume on noise pollution
3. To evaluate the noise levels at different day timings (lean and peak hours) and night timings.

III. NOISE AND NOISE MAPPING

Commotion estimation is an essential analytic device in clamor control innovation. The goal of commotion estimation is to make precise estimation which gives us an intentional demonstration of looking at clamors under changed conditions for evaluation of unfavorable effects of commotion and receiving reasonable control procedures for clamor decrease.
Clamor contamination has many negative physiological and social ramifications and influences the prosperity and personal satisfaction in our condition. Commotion contamination irritates rest, builds pressure, causes diversion, uneasiness and denies significant serenity. It exasperates underestudies, is a risk to the matured and the debilitated and is an indication of disregard to the network on the loose. Long introduction to commotion can cause clamor prompted hearing misfortune. High clamor levels can likewise add to cardiovascular impacts. Commotion can effect sly affect creatures as well, for example, startling creatures out of their characteristic natural surroundings. Other minor mental issues, for example, strain, crabiness and trouble in concentrating are additionally apparent from commotion. While having delayed presentation, commotion will have broad adverse impacts; additionally, combined with the inexorably urbanized condition portrayed by a high thickness of living in tall structure living arrangements, the capacity of clamor contamination to influence a bigger extent of individuals likewise builds; personal satisfaction is likewise undermined, particularly amid evening time. Other negative effects that are identified with the personal satisfaction incorporate undue modifications in the ordinary conduct of people; precedents incorporate keeping the utilization of local locations, for example, galleries and basic regions because of unreasonable commotion levels just as the closing of windows in homes to counteract clamor outflow.

IV. NOISE LEVEL SAMPLING AND DATA COMPUTATION

The testing approach utilized is neighborhood managerial units combined with land use class. Each land use was distinguished at the structure impression level for example in view of the utilization of the specific landed structure. Consequently, private, instructive, traffic and business land utilizes were incorporated into the examining. Table 1 subtleties the land use classifications included the GPS directions and areas of information gathering. Sound weight esteeme in decibels – Db (A) for example decibels in A-weighted scale were recorded for three times of the day – morning, evening and night. The information was gathered between July sixth 2019 and September first 2019, on Mondays, Wednesdays and Saturdays, consolidating working days of the week and ends of the week. The commotion evaluation was directed amid morning (7-9 am), evening (12-2pm) and evening (5-7pm). These are; Leq-m, Leq-n and Leq-e: hourly A-weighted equal sound dimension throughout the first part of the day, early afternoon and night time frame; • NI: commotion record, and Lmin and Lmax: least and most extreme clamor level amid the inspecting time frame.

V. NOISE POLLUTION

Central Pollution Control Board (CPCB) has the responsibility to regulate and control sources of Noise Pollution with the objective of maintaining the ambient air quality standards. Ambient noise values are compared with the standard prescribed limits as per Environmental Protection Act, 1986.Noise limits are given by Noise Pollution (Regulations & Control) Rules, 2000 for different locations mentioned in Table 1.

A silence zone is defined as an area comprising not less than 100 mts around hospitals, educational institutions and courts.

VI. EFFECTS OF NOISE POLLUTION

2. Health Issues.
3. Cardiovascular Issues.
4. Trouble Communicating.
5. Effect on Wildlife.

Noise levels and traffic volume were measured at 35 different locations, covered under commercial, silence and residential zones in Coimbatore city. The noise levels were measured using noise meter software (mobile application).

VII. STUDY AREA

The study area selected is Coimbatore in the state of Tamil Nadu. Coimbatore is the second upcoming smart city in India and is called as Manchester of South India. The longitude of Coimbatore lies between 76°65’ E – 77° 29’ E. The latitude lies between 10° 22’ N – 11° 41’ N. The total area of Coimbatore is 471 Square kilometers. The study area is shown in Figure 1.

Selection of Sampling Points

In light of the land use design, 35 areas were chosen inside Coimbatore, for estimating the commotion levels. These areas were chosen to such an extent that they speak to private, business, modern and quiet zones, intersections, open and semi-open zones. The different areas picked for looking over are given in the Table 2.
Measurement Duration

Fitting and delegate inspecting interims ought to be chosen and legitimized. Ordinarily the common interims or "normal occasions" will be 15-30 minutes amid daytime, and 15 minutes amid evening time. These might be enhanced with shorter or longer inspecting span in specific cases. In a perfect world, testing over various days and at various occasions amid the day will guarantee that the overview is factually delegate.

In our study, the estimations were taken for a term of 30 min, amid the pinnacle hours. The pinnacle hours considered was 7.30 AM – 10.30 AM and 4.00 PM – 7.30 PM and every one of the estimations were taken amid the week days.

Figure 2 Location of Noise level Samples

Placing of Sound Level Meter

The instrument is set with its mouthpiece pointed towards the sound source. Commonly natural commotion estimations are taken in free field, least 3.5m from façade. Since it is beyond the realm of imagination at all conditions, the accompanying method was received in our investigation.

• The amplifier ought to be at any rate 1m far from façade or divider
• The receiver ought to be at a stature of 1.2 m over the ground.
• A windshield is put over the mouthpiece to prepare for wind impacts.
• To limit the reflections from the administrator, it is adequate if SLM is held at a manageable distance.
Table 2 Location of Samples and their Weightage

<table>
<thead>
<tr>
<th>Lat</th>
<th>Long</th>
<th>Location</th>
<th>Category</th>
<th>Peak Hour</th>
<th>Weightage</th>
<th>Risk</th>
<th>Non-Peak Hour</th>
<th>Weightage</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.07721</td>
<td>76.9414721</td>
<td>Thudiyalur</td>
<td>Residential</td>
<td>81</td>
<td>2</td>
<td>High</td>
<td>69</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.024711</td>
<td>76.9518582</td>
<td>Saibabakovil</td>
<td>Residential</td>
<td>86</td>
<td>2</td>
<td>High</td>
<td>70</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.026699</td>
<td>76.9456305</td>
<td>Saibaba colony</td>
<td>Residential</td>
<td>82</td>
<td>2</td>
<td>High</td>
<td>70</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.03849</td>
<td>76.92401</td>
<td>Edayarpalayam</td>
<td>Residential</td>
<td>80</td>
<td>2</td>
<td>High</td>
<td>64</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.06517</td>
<td>76.90848</td>
<td>Kanuvai</td>
<td>Commercial</td>
<td>81</td>
<td>2</td>
<td>High</td>
<td>65</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.02298</td>
<td>76.96633</td>
<td>Gandhipuram</td>
<td>Commercial</td>
<td>85</td>
<td>2</td>
<td>High</td>
<td>73</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.0104</td>
<td>76.94999</td>
<td>RSParam</td>
<td>Residential</td>
<td>81</td>
<td>2</td>
<td>High</td>
<td>72</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.02117</td>
<td>76.97617</td>
<td>100 feet road</td>
<td>Industrial</td>
<td>82</td>
<td>2</td>
<td>High</td>
<td>78</td>
<td>2</td>
<td>High</td>
</tr>
<tr>
<td>10.9887608</td>
<td>76.96204</td>
<td>Ukadam bus stand</td>
<td>Industrial</td>
<td>81</td>
<td>2</td>
<td>High</td>
<td>76</td>
<td>2</td>
<td>High</td>
</tr>
<tr>
<td>10.9921222</td>
<td>76.960184</td>
<td>Town hall</td>
<td>Industrial</td>
<td>82</td>
<td>2</td>
<td>High</td>
<td>77</td>
<td>2</td>
<td>High</td>
</tr>
<tr>
<td>10.9958065</td>
<td>76.966363</td>
<td>5 corner road</td>
<td>Commercial</td>
<td>86</td>
<td>2</td>
<td>High</td>
<td>74</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.0046305</td>
<td>76.971687</td>
<td>VOC Park</td>
<td>Commercial</td>
<td>78</td>
<td>2</td>
<td>High</td>
<td>70</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.99952309</td>
<td>76.9681468</td>
<td>KG</td>
<td>Commercial</td>
<td>78</td>
<td>2</td>
<td>High</td>
<td>69</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.99874</td>
<td>77.03198</td>
<td>Singanallur</td>
<td>Industrial</td>
<td>82</td>
<td>2</td>
<td>High</td>
<td>69</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.01262</td>
<td>77.01901</td>
<td>Uppilipalayam</td>
<td>Residential</td>
<td>65</td>
<td>1</td>
<td>Safe</td>
<td>60</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.07815</td>
<td>76.88507</td>
<td>Ramanathapuram</td>
<td>Commercial</td>
<td>69</td>
<td>1</td>
<td>Safe</td>
<td>60</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.99828</td>
<td>77.05337</td>
<td>Ondipudur</td>
<td>Industrial</td>
<td>63</td>
<td>1</td>
<td>Safe</td>
<td>60</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.11776</td>
<td>76.93555</td>
<td>Narasimhamaickenpalayam</td>
<td>Residential</td>
<td>80</td>
<td>2</td>
<td>High</td>
<td>72</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.87436</td>
<td>77.00175</td>
<td>ethakalmandapam</td>
<td>Residential</td>
<td>75</td>
<td>2</td>
<td>High</td>
<td>65</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.91372</td>
<td>76.95278</td>
<td>Madiukkari</td>
<td>Industrial</td>
<td>72</td>
<td>1</td>
<td>Safe</td>
<td>60</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.82248</td>
<td>77.01614</td>
<td>Kinathukadavu</td>
<td>Industrial</td>
<td>80</td>
<td>2</td>
<td>High</td>
<td>73</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.11783</td>
<td>76.96863</td>
<td>Idikarai</td>
<td>Industrial</td>
<td>79</td>
<td>2</td>
<td>High</td>
<td>64</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.06111</td>
<td>76.98324</td>
<td>Chinnavedampatti</td>
<td>Industrial</td>
<td>74</td>
<td>1</td>
<td>Safe</td>
<td>62</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.15101</td>
<td>76.9336</td>
<td>Periyanaichkenpalayam</td>
<td>Industrial</td>
<td>89</td>
<td>2</td>
<td>High</td>
<td>75</td>
<td>2</td>
<td>High</td>
</tr>
<tr>
<td>11.13246</td>
<td>76.94313</td>
<td>Thekkupalayam</td>
<td>Commercial</td>
<td>72</td>
<td>1</td>
<td>Safe</td>
<td>62</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>10.98992</td>
<td>76.84088</td>
<td>Thondamuthur</td>
<td>Residential</td>
<td>81</td>
<td>2</td>
<td>High</td>
<td>74</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.17206</td>
<td>76.97295</td>
<td>Veerapandi</td>
<td>Commercial</td>
<td>74</td>
<td>1</td>
<td>Safe</td>
<td>61</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.02824</td>
<td>76.93046</td>
<td>Velandipalayam</td>
<td>Commercial</td>
<td>85</td>
<td>2</td>
<td>High</td>
<td>75</td>
<td>1</td>
<td>High</td>
</tr>
<tr>
<td>10.74096</td>
<td>77.10216</td>
<td>PeriyaNagamam</td>
<td>Residential</td>
<td>73</td>
<td>1</td>
<td>Safe</td>
<td>67</td>
<td>1</td>
<td>Safe</td>
</tr>
<tr>
<td>11.04661</td>
<td>76.83151</td>
<td>Marudhamalai temple</td>
<td>Commercial</td>
<td>70</td>
<td>1</td>
<td>Safe</td>
<td>63</td>
<td>1</td>
<td>Safe</td>
</tr>
</tbody>
</table>
GIS based assessment and mapping of noise pollution in Coimbatore district

<table>
<thead>
<tr>
<th>Lat</th>
<th>Long</th>
<th>Name</th>
<th>Type</th>
<th>Level</th>
<th>Noise Level</th>
<th>DB</th>
<th>Rating</th>
<th>Lat</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.97881</td>
<td>76.75313</td>
<td>Isha yoga</td>
<td>Commercial</td>
<td>69</td>
<td>Safe</td>
<td>50</td>
<td>1</td>
<td>10.97881</td>
<td>76.75313</td>
</tr>
<tr>
<td>10.92891</td>
<td>76.98447</td>
<td>Eachanari</td>
<td>Commercial</td>
<td>86</td>
<td>High</td>
<td>76</td>
<td>2</td>
<td>10.92891</td>
<td>76.98447</td>
</tr>
<tr>
<td>10.94381</td>
<td>76.97727</td>
<td>Sidco</td>
<td>Industrial</td>
<td>88</td>
<td>High</td>
<td>78</td>
<td>2</td>
<td>10.94381</td>
<td>76.97727</td>
</tr>
<tr>
<td>11.02115</td>
<td>76.97439</td>
<td>Sidhapudhur</td>
<td>Industrial</td>
<td>89</td>
<td>High</td>
<td>77</td>
<td>2</td>
<td>11.02115</td>
<td>76.97439</td>
</tr>
<tr>
<td>11.05998</td>
<td>76.94414</td>
<td>GN mills</td>
<td>Industrial</td>
<td>85</td>
<td>High</td>
<td>74</td>
<td>1</td>
<td>11.05998</td>
<td>76.94414</td>
</tr>
<tr>
<td>11.0104</td>
<td>76.94899</td>
<td>R.S.Puram</td>
<td>Residential</td>
<td>86</td>
<td>High</td>
<td>75</td>
<td>2</td>
<td>11.0104</td>
<td>76.94899</td>
</tr>
<tr>
<td>10.9616</td>
<td>76.97295</td>
<td>Sundarapuram</td>
<td>Residential</td>
<td>87</td>
<td>High</td>
<td>76</td>
<td>2</td>
<td>10.9616</td>
<td>76.97295</td>
</tr>
<tr>
<td>10.95315</td>
<td>76.9514</td>
<td>Kuniyamuthur</td>
<td>Commercial</td>
<td>78</td>
<td>High</td>
<td>68</td>
<td>1</td>
<td>10.95315</td>
<td>76.9514</td>
</tr>
<tr>
<td>10.98785</td>
<td>76.93777</td>
<td>Perur main road</td>
<td>Commercial</td>
<td>85</td>
<td>High</td>
<td>72</td>
<td>1</td>
<td>10.98785</td>
<td>76.93777</td>
</tr>
<tr>
<td>11.02706</td>
<td>76.98303</td>
<td>Avarampalayam</td>
<td>Residential</td>
<td>79</td>
<td>High</td>
<td>70</td>
<td>1</td>
<td>11.02706</td>
<td>76.98303</td>
</tr>
<tr>
<td>10.9989</td>
<td>76.98221</td>
<td>Big bazaar</td>
<td>Commercial</td>
<td>85</td>
<td>High</td>
<td>75</td>
<td>2</td>
<td>10.9989</td>
<td>76.98221</td>
</tr>
<tr>
<td>11.04941</td>
<td>77.00937</td>
<td>Ganapathy</td>
<td>Industrial</td>
<td>89</td>
<td>High</td>
<td>77</td>
<td>2</td>
<td>11.04941</td>
<td>77.00937</td>
</tr>
<tr>
<td>11.06122</td>
<td>77.1327</td>
<td>Rasipalayam</td>
<td>Industrial</td>
<td>78</td>
<td>High</td>
<td>76</td>
<td>2</td>
<td>11.06122</td>
<td>77.1327</td>
</tr>
<tr>
<td>11.17829</td>
<td>76.9571</td>
<td>Press colony</td>
<td>Residential</td>
<td>83</td>
<td>High</td>
<td>76</td>
<td>2</td>
<td>11.17829</td>
<td>76.9571</td>
</tr>
</tbody>
</table>
VIII. SPATIAL ANALYST TOOL (IDW)
IDW gauges were made dependent on close-by known areas. The loads doled out to the adding focuses are the reverse of its separation from the addition point. Thusly, the nearby indicates are made-up have more loads (in this way, more effect) than removed focuses and the other way around. The realized example indicates are understood act naturally overseeing from one another (Robinson and Metternicht, 2006).

where z(x0) is the introduced esteem, n speaking to the all out number of test information esteems, xi is the ith information esteem, hij is the partition remove between added esteem and the example information esteem, and β means the weighting power. The addition esteem changes from 2 to 3.99.

IDW is an ideal representation of the commotion disseminations in territories delicate to clamor. There ought to be prohibition on sounding of horns in local locations, quiet zones for example close schools and clinics, Proper upkeep of vehicles and streets. Clamor cushion zones ought to be made among structures and interstates. Appropriate authorization of traffic police to check the vehicles. Speed points of confinement ought to be kept up particularly in private and quiet regions. In the event of Silence Zones, the volume of traffic ought to be diminished by redirecting the traffic and utilization of horn ought to be limited. Open ought to be made mindful.

IX. CONCLUSION
The paper has displayed the consequences of a clamor mapping study in Coimbatore city, concentrating on the CBD. The investigation found that the CPCB clamor levels change from a low of 61 db in the Maruthamalai to a high of 89db in the Ganapathy and that the greater part of the commotion can be credited to vehicular traffic. These outcomes show that commotion levels in Coimbatore are sufficiently high to warrant the consideration of the ecological specialists and further research. An expansion of this study to spread the entire city, with clamor levels saw at variation times, would be a prescribed route forward. Usage of GIS in clamor mapping contributed decidedly of the control commotion contamination. Numerous specialists currently think that its simpler to lead ponders on commotion levels. This has additionally helped urban organizers to improve city and towns pollution. The commotion guide of the examination zone at 6.30pm-8.00pm for workday circumstance demonstrates that clamor level fluctuates from 60dB (A)- 86dB (A) right now period. Structure the guide it can say that night commotion level is a lot higher than the morning and evening clamor levels. Commotion level is higher in the significant streets of the investigation zone and clamor level is lower in minor streets. NH 47 focal piece of Gandipuram shows higher commotion amid evening. Over half of the investigation zone is powerless against abnormal state of commotion (79 dB (A)- 89 dB (An)) and about 10% zone is presented to bring down dimension of clamor (60 dB-69 dB). Just 40% territory is having moderate clamor levels (73 dB (A)- 77 dB (A)).

REFERENCES
11. www.cseindia.org
12. www.cpcb.nic.in
13. www.ieindia.org
15. www.cseindia.org
GIS based assessment and mapping of noise pollution in Coimbatore district

AUTHORS PROFILE

Anitha Selvasofia completed her U.G Degree in Civil Engineering in the year 2004 in Karunya Institute of Technology, Coimbatore. She completed her M.E Geo-Informatics in the year 2007 at College of Engineering, Guindy. She has published 11 papers in International Journals and 2 papers in International Conference and 3 papers in National conferences. She has organized 2 National Conferences. At present she is working as Assistant Professor at Sri Ramakrishna Engineering College of Technology, Coimbatore.

Divyabharathi.S doing UG programme in Sri Ramakrishna Engineering College, Coimbatore. She attended 1 National Conference and presented project on SRISHTI 2019, Kerala. She has done projects on rehabilitation of structures.

Swetha doing UG programme in Sri Ramakrishna Engineering College, Coimbatore. So far she have done projects on Evaluation of traffic safety and analysis of water supply system. The other skills that I possess are MS-Excel, MS-office and English proficiency.

P.Backya pursuing her B.E- Civil Engineering in Sri Ramakrishna Engineering College, Coimbatore. She completed her research work on replacement of flyash bricks with different material compositions and Analysis of Noise level in Coimbatore. She attended 3 National Conferences. She is the best outgoing student of the department and received Sri Ramasamy Memorial award twice and Smt Dhanalakshmi Lingaraj Memorial award once for her academic excellence. She is also an active member of Indian Concrete Institute and Indian Geotechnical Society.

A.Balamithra doing UG programme in Sri Ramakrishna Engineering College, Coimbatore. So far she have done projects on Evaluation of traffic safety and analysis of water supply system. The other skills that I possess are MS-Excel, MS-office and English proficiency.