Meta-material Inspired Monopole Antenna for LTE/Bluetooth/Wi-Max Subsystems

B Sai Sivakumar, P Pardha Saradhi, B T P Madhav, M Venkateswara Rao, G Kesava Sai

Abstract- A Meta-material inspired hex-band antenna for LTE/ Bluetooth / Wi-Max subsystems is presented in this paper. The antenna presented is having dimensions of 52x33mm² printed on FR4 substrate of thickness 1.6mm. The proposed antenna achieved six resonance peaks at 3.1/4.1/6.8/8.4/12.5 GHz. The Split Ring Resonator introduced act as a part of defected ground structures, which improve the current directions. The final antenna proposed has circular polarization at frequencies 2.2/2.3/5.2 GHz. The presented antenna has a peak gain of 4.2dB.

Index Terms: Meta-materials, Split Ring Resonator, Circular polarization.

I. INTRODUCTION

Meta-materials are not directly available in nature, they are the compact ones when compared over conventional material structures contain some properties like negative refractive index and negative permeability [1]. In nature, these metamaterials are not found, but they are made artificially. So, these properties made researchers to turn their eyes towards metamaterials and these materials achieved good name. These materials are used in antenna fabrication to achieve or enhance the performance of the antenna. Nowadays the research is going, on these metamaterials. They can achieve higher data rates and by using them in the antennas we can achieve good bandwidth, gain and efficiency, there is a large scope for advanced communication systems to avail services for the users with higher performance rate and achieve superior performances [2]. Nowadays in the wireless communication a revolution has been established with the help of some communication modules, such as, 4G mobile communication, Bluetooth, WLAN, Wi-Fi, GPS, WiMAX, etc [3]. Today the electronics system designing industries are focusing on miniaturized devices which is used for maintaining or increasing the performances of them, along with other wireless communication applications. There is a requirement of a radiating element to is operate at multiple frequency bands. We cannot achieve enhanced characteristics like higher gain, directivity, low profile and multiple operating frequency by a single patch [4].

II. ANTENNA DESIGN

2.1 Antenna Design and Analysis

In this article, construction of the antenna is done in three major steps. The antenna designed is fed with a coplanar waveguide (CPW) feed with SRR’s which are circularly polarized. The first step consists of design of the antenna and its construction. The next step contains the characteristics of SRR with the help of a unit cell presented and in the final step we obtained the design of SRR. The dielectric material used in the construction is of antenna is FR-4, which contains εr of 4.4 and loss tangent of 0.22. This type of antenna has dimensions 52x32x1.6 mm³. we fed the antenna with 50Ω transmission line using CPW feed. For Simulations and designing the iterations of antenna ANSYS HFSS software is used. The proposed antenna has achieved good results in simulation. The proposed antenna has dimension of 52x32 mm² is printed on 1.6 mm thick (t) FR-4 substrate (εr=4.4) and loss tangent (δ) 0.02. In the ground plane slots are made. The material of the radiating patch is copper and on the back side the ground plane exists. The length of feed bis 1.5 mm and the variations in the feed line plays a crucial role in achieving resonance.
A 50Ω compact coaxial wire is connected to the metallic strip of the antenna for testing. The combination of two ring resonators with splits on them and metallic strips form the required metamaterial structure. The internal structures of ring resonator, i.e. the upper part and lower part, are connected by a metallic strip, which appears to be a ‘Z-shaped’ structure.

<table>
<thead>
<tr>
<th>Antenna parameter</th>
<th>dimension (in mm)</th>
<th>Antenna parameter</th>
<th>dimension (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>18</td>
<td>L6</td>
<td>30</td>
</tr>
<tr>
<td>L2</td>
<td>14</td>
<td>L7</td>
<td>1.5</td>
</tr>
<tr>
<td>L3</td>
<td>14</td>
<td>L8</td>
<td>44.5</td>
</tr>
<tr>
<td>L4</td>
<td>10</td>
<td>L9</td>
<td>15.25</td>
</tr>
<tr>
<td>L5</td>
<td>32</td>
<td>L10</td>
<td>31.25</td>
</tr>
<tr>
<td>L11</td>
<td>3.45</td>
<td>Ls</td>
<td>52</td>
</tr>
<tr>
<td>Ws</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The operating wavelength of the antenna is \(\lambda_0 \) and it is calculated by the given equation (1).

\[
\lambda_0 = \frac{c}{f} \quad (1)
\]

Where ‘c‘ is the free space velocity of light and ‘f’ denotes the resonant frequency.

The thickness of the substrate \((h_s) \) is given by the equation (2):

\[
h_s \leq \frac{0.3c}{2\pi f} \sqrt{\frac{2}{\sqrt{\varepsilon_r^2 + 1}}} \quad (2)
\]

Where, \(\varepsilon_r \) denotes the substrate’s relative dielectric constant.

The given equation (3) represents width of the strip \(W_s \).

\[
W_s = \frac{C}{2f} \sqrt{\frac{2}{\sqrt{\varepsilon_r^2 + 1}}} \quad (3)
\]

The presented antenna effective length (\(\Delta L \)) is due to effective dielectric constant as shown in equation (4):

\[
\Delta L = 0.412h_s \left\{ \frac{\varepsilon_r + 0.3}{\varepsilon_r - 0.258} \right\} \left(\frac{W_s}{h_s} + 0.264 \right) \quad (4)
\]

The length of the presented antenna patch \((Ld) \) is given by the equation (5):

\[
L_d = \left\{ \frac{C}{2f} \sqrt{\varepsilon_{eff}} \right\} - 2\Delta L \quad (5)
\]

The effective di-electric constant of the antenna is given by the equation (6):

\[
\varepsilon_{eff} \approx \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + \frac{12h_s}{W_s} \right)^{-0.5} \quad (6)
\]

2.2. Generation of Hexa-band frequencies

SRR’s are the mainly used technique in this presented antenna. In this model, the metallic upper and lower side bars are used to connect the metal strips. The split ring resonator internal side and the shape of the plane seems to be same as Z-shaped structure. The split ring resonator unit cell has a dimension of 8×1.635 mm² along X, Y, Z axes. In this model, an asymmetric ground is introduced. The main advantage of introducing an asymmetric ground is, it provides circular polarization. The antenna which was proposed, mainly works at five frequency bands particularly for Bluetooth, WLAN, Wi-Fi, GPS, Wi-MAX etc. applications. The circular polarization mainly used in satellite applications and tracking of targets. Different techniques are used to achieve circular polarization. The amount of circular polarization produced or generated depends upon several factors. Those factors are size, shape and geometry of the antenna and in addition to this, the important factor is the orientation of the elements.
The proposed antenna has special features over other antennas which are using normal materials. The antenna is made by using meta-material which has negative permeability and negative permittivity, which meets the requirement of the antenna to work at high frequency ranges. The etching is done on the ground plane which is mainly used for providing additional resonant frequencies. The gap between resonator and ground acts as a capacitor. In this method, iterations are performed. The SRR is mainly used to resonate at different frequencies so there would be a huge change in the reflection coefficient values which are caused due to introducing metamaterial with SRR.

III. RESULTS

3. Results and Discussion

The six working bands of the proposed antenna at which they resonate are at 2.4/3.3/4.1/6.4/8.4/12.4 GHz. The frequencies at 2.55/3/5/6.5 GHz achieved circular polarization. The measured versus software defined results of circular polarized and scattering parameters of the designed antenna are shown in Figure 4 and 5 respectively.

Fig 4. Measured versus simulated S_{11} results of the proposed antenna.

Fig 5. Axial Ratio versus frequency plot.

Fig 6. Reflection Coefficient Results for the parametric analysis done by varying the feed width.

3.1. Parametric Analysis

Parametric analysis is done by varying the feed line width and the reflection coefficient results achieved by varying the feed width are as shown in the Fig-6.

3.2. Radiation pattern

This is the band of frequencies covering the bands of 2.2,2.5,3.2 GHz of frequencies. This is possible by the outer metallic strip that can generate the larger frequencies.
IV. CONCLUSION

The proposed antenna has a Meta-material inspired antenna operating in six-bands with a triple band circular polarization is presented. The antenna presented works at six-bands and can be used for applications like Bluetooth, Wi-Fi, W-BAN (2.4GHz), and at 6.4/8.4/10/12.4 GHz have X-band applications. By introducing the SRR structure combined with metamaterial properties, a bandwidth enhancement is observed. The fabricated antenna results are in good relationship with the simulated antenna results.

ACKNOWLEDGMENT

We thank the technical support of DST through EEQ/2016/000604 and ECR/2016/000569, and KLEF for providing us opportunities to do the work.

REFERENCES

AUTHORS PROFILE

B. Sai SivaKumar was a student pursuing his post-graduation in Koneru Lakshmaiah Education Foundation, Guntur, India.

Dr. P. Parthna Saradhi professor Koneru Lakshmaiah Education Foundation, Guntur, India.

Mr. M. Venkateswara Rao research scholar Koneru Lakshmaiah Education Foundation, Guntur, India.

G Kesava Sai student in Koneru Lakshmaiah Education Foundation, Guntur, India.