
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-8, Issue-1, May 2019

2998

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1953058119/19©BEIESP

Journal Website: www.ijrte.org



 Abstract: Partial redundancy elimination algorithm is a

compiler optimization method that eliminates expressions that are

redundant on some programming path but not necessarily all

paths in a Data Flow Graph(DFG) of a program. The E-Path

Partial Redundancy Elimination) algorithm authored by DM

Dhamdhere for Partial Redundancy Elimination(PRE) of

common subexpression elimination does not give much

importance to the elimination of edge splitting, even though the

edge splitting is much more expensive than inserting an

expression in an existing node of a DFG of a program. So in this

paper we try to refine the E-Path PRE algorithm with a new

equation for inserting expressions at nodes avoiding edge splitting

as far as possible and hence the E-Path PRE algorithm becomes

more compact and beautiful.

Keywords: Data Flow Graph, Partial Redundancy Elimination,

Availability, Anticipability, E_path suffix.

.

I. INTRODUCTION

The redundancy of an expression in a program can exist in

the form of common subexpression, a loop-invariant

expression, and it can be partial redundancy too, if it is found

along some of the paths, but not necessarily along all paths. A

Partially Redundant Elimination (PRE) algorithm is an

optimization technique for transforming partial redundancy

of an expression in a program into fully redundancy and

eliminate the redundancy. A PRE algorithm is considered to

be optimal if no other PRE algorithm gives a data flow graph

which contains fewer computations (less insertions and more

deletions) in any path in the data flow graph.

The Morel E and Renvoise C [1] first proposed a

bi-directional algorithm for code optimization in compilers in

1979, by suppressing partial redundancies such as moving

loop invariant computation out of a loop or deleting

redundant computations. The algorithm is referred to as

MRA. The MRA algorithm was updated by DM Dhamdhere

and SM Joshi [2] by including strength reduction techniques.

However, when there is a loop invariant expression that

cannot be moved to a node out of the loop, the MRA fails,

because it performs insertions strictly in nodes of a data flow

graph, and it does not support the edge splitting at all. And the

MRA lacks both computational and life time optimality also.

Revised Manuscript Received on 30 May 2019.
* Correspondence Author

 Rahibb*, Research Scholar,, Department of Computer Applications,

Bharathiar University, Coimbatore, Tamil Nadu, India

Dr. S Sarala, Assistant Professor(SS), Department of Computer

Applications, Bharathiar University, Coimbatore, Tamil Nadu, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The Edge Placement Algorithm [3] by DM Dhamdhere,

called EPA, performs insertions both in nodes and along

edges in a DFG. In this algorithm an expression is hoisted as

far up as possible to obtain computational optimality, and then

it is subjected to sinking to get lifetime optimality without

sacrificing computational optimality. However EPA does not

provide lifetime optimality in some cases.

 The research papers [4] and [5] developed for enhancing

PRE algorithm to eliminate partial redundancies of

expressions in a computer program.

 The problem lies with the paper [4], hoisting-by-sinking,

is that the conceptual complexity is so high that it is hard to

understand and implement in a compiler. There are research

papers [6] , [7] and [10] that do not use hoisting-by-sinking

method. However, the paper [6] suffers from the unnecessary

edge splitting. But unlike the paper [11] says, the paper [10]

does avoid the edge splitting by using a conditional statement

in its algorithm.

 The PRE algorithm used in the paper [7] is used in the text

book [8] and in [9] though, the splitting of the edges before

the analysis of the program results in unnecessary edge

splitting.

 DM Dhamdhere [11] proposed a unidirectional data flow

analysis algorithm for partial redundancy elimination which is

computationally and lifetime optimal. Though the edge

splitting is more expensive than inserting an expression at an

existing node [3],[11], the E-Path PRE algorithm does not

give much care for eliminating them. In this paper we give an

alteration to the insert equation at nodes of the E-Path PRE

algorithm to remove the edge splitting of a DFG as much as

possible and hence to make the algorithm more beautiful and

attractive.

II. E-PATH_PRE ALGORITHM BY DM

DHAMDHERE

 DM Dhamdhere presented the E-Path algorithm [11]. The

algorithm first identifies the insertion points at nodes and on

edges and then identify the saves points, and finally the

redundant occurrences of an expression for replacement. The

Table 1 summarizes the data flow properties and equations of

the algorithm. Let e be an expression in a nodei of a DFG. The

local data flow property anticip_loci represents a locally

anticipated upwards exposed e in nodei, computei represents a

locally available downwards exposed e in nodei, and transi

reflects the absence of assignments to the operand(s) of e in

nodei. Global properties of availability, anticipability and

E-path suffix are used to collect global information. inserti

and inserti,j identify e to be inserted in nodei, and on edge(i,j)

respectively, and savei identifies the node bi in which e should

be saved.

A Refinement on E-Path Partial Redundancy

Elimination
 Rahibb, S Sarala

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Refinement on E-Path Partial Redundancy Elimination

2999

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1953058119/19©BEIESP

Journal Website: www.ijrte.org

Table 1 : E-PATH Partial Redundancy Elimination

Data Flow Properties

Data Flow Equations

III. A REFINEMENT

 Consider the control flow graph of Fig.1(a) consisting of

7 nodes. Here the E_Path_PRE is n1-n3-n7. So the

E_PATH_PRE algorithm saves the expression a*b at n1 in a

temporary variable t and replaces it in the node n7 with t.

Since s = False for the node n2, insertion

of the computation at node n2 is not possible according to the

E-Path PRE algorithm. But insertion on the edge (n2,n3) is

possible since INSERT23 is true as shown in the Fig.1(b). But

if we apply the new equation shown in the Table 2, we get the

Fig.1(c). According to the lemma III in the E_Path PRE

algorithm an expression in a node can be eliminated if and

only if that expression is available at beginning of that node

in the optimized program. In Fig.1(c) the expression a-b is

available at the entry of nodes n4,n5, n6 and n7, and hence the

expression a-b from them are deleted. The application of the

new INSERT equation has 2 advantages. One is that it

eliminates the edge splitting as much as possible, and the

second is it replaces isolated expressions from the nodes to

some extend without sacrificing the computational and life

time optimality of the E-Path PRE algorithm. The expression

a-b at nodes n4, n5, and n6, in Fig.1(a) are the isolated

expressions because the E-Path PRE algorithm cannot form

E-paths for them. However, they are deleted by the new

equation as shown in Fig.1(c).

Table 2 : A Refinement on E_Path PRE Algorithm

INSERTi =¬AV_OUTi.¬EPS_OUTi. s s

All other equations remain the same as in the PRE algorithm.

 n1 n2

 n3 n4 n5 n6

n7

 (a) before PRE

 n1 n2

 n2,3

 n3 n4 n5 n6

 n7

 (b) after E_Path PRE

 n1 n2

 n3 n4 n5 n6

 n7

(c) after applying new equation

Fig.1. Partial Redundancy Elimination

computei : e is nearby existing in bi

anticip_loci : e is nearby anticipatable in bi

transi : bi does not include an assignment to

any of the operands of e

avail_ini/avail_outi : e is existing at entry/exit of bi

anticip_ini/anticip_outi : e is anticipatable at entry/exit of bi

e_ps_ ini/e_ps_outi : entry/exit of bi is in an e-path suffix

redundi : incidence of e in bi is redundant

inserti : insert tempe e in node bi

insertij : insert tempe e on edge (bi,bj)

save _ini/save_outi : e must be kept above the entry/exit of bi

savei : e should be kept in tempe in node bi

avail_ini : p

avail_outi : avail_ini.transi + computei

anticip_ini : anticip_outi. transi+ anticip_loci

anticip_outi : s

e_ps_ ini : p+e_ps_outp)anticip_ini¬avail_ini

e_ps_outi : e_ps_ ini. ¬anticip_loci

redundi : (avail_ini + e_ps_ ini).anticip_loci

inserti : ¬avail_outi. .¬e_ps_outi. s

insertij : ¬inserti ¬avail_outi. .¬e_ps_outi. e_ps_inj

save_outi : s+ redunds+ save _ins). avail_outi

save _ini : save_outi. ¬computei

savei : save_outi.computei¬(redundi.transi)

a-b

a-b

a-b

a-b

a-b

t

a-b

a-b

a-b

t = a-b

t = a-b

t

t

t

t

t = a-b

t = a-b

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-8, Issue-1, May 2019

3000

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1953058119/19©BEIESP

Journal Website: www.ijrte.org

IV. CONCLUSION

 The E-Path PRE algorithm, by DM Dhamdhere did not

take care of eliminating edge splitting much, even though the

edge splitting is much more expensive than inserting a

computation in an existing node. In this paper we added much

care for avoiding edge splitting as far as possible to make the

E-Path PRE algorithm more refined and compact. In this

paper we updated the INSERTi equation to eliminate the

edge splitting as mcuh as possible. And the refined algorithm

is also computationally and lifetime optimal.

ACKNOWLEDGMENT

 We are bound to thank Dr. Vineeth Kumar Paleri,

Professor, Department of Computer Science, NIT Calicut,

Kerala, India, for his sincere, unconditional and constant

guidance for our research work, and we would like to thank

the University Grants Commission too, for awarding Teacher

Fellowship for completing Ph.D. in Computer Science under

the Faculty Development Programme of the UGC during the

XII
th

 plan period (Letter No. F. No. FIP/12th Plan/KLCA045

TF07, dated: 10-09-2016).

REFERENCES

1. 1. E. Morel and C. Renvoise, “Global optimization by suppression

of partial redundancies,” Communications of the ACM, vol. 22, no.

2, pp. 96-103, 1979.

2. 2. S .M. Joshi, D.M. Dhamdhere : A composite hoisting - strength

reduction transformation for global program optimisation - Parts I and

II, International Journal of Computer Mathematics,11 (1982),21-41;

111-126 .

3. D. M. Dhamdhere. A fast algorithm for code movement optimization.

SIGPLAN Notices, 23(10): 172–180, 1988.

4. V. M. Dhaneshwar and D. M. Dhamdhere. Strength reduction of large

expressions. Journal of Programming Languages, 3:95–120, 1995.

5. U. P. Khedker and D. M. Dhamdhere. Bidirectional data flow analysis :

Myths and reality. SIGPLAN Notices, 34(6):47–57, 1999.

6. R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of

redundant expressions. Proceedings of ACM SIGPLAN ’98

Conference on PLDI, pages 1–14, June 1998.

7. J. Knoop, O. Ruthing, and B. Steffen. Optimal code motion: theory

and practice. ACM TOPLAS, 30(4):1117–1155, 1994.

8. A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles,

Techniques, and Tools, Addison-Wesley,8th impression: 2012

9. Sandeep Dasgupta, Tanmay Gangwani, Partial Redundancy

Elimination using Lazy Code Motion, Academic Project, pages

1-19, May 11, 2014

10. V. K. Paleri, Y. N. Srikant, and P. Shankar. A simple algorithm for

partial redundancy elimination. Sigplan Notices, 33(12):35–43, 1998.

11. D. M. Dhamdhere. E-path PRE—partial redundancy elimination made

easy. ACM SIGPLAN Notices, 37(8):53–65, 2002.

