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 

    Abstract: Partial redundancy elimination algorithm  is a 

compiler optimization method that eliminates expressions that are 

redundant on some programming path but not necessarily all 

paths in a Data Flow Graph(DFG) of a program. The E-Path 

Partial Redundancy Elimination) algorithm authored by DM 

Dhamdhere for Partial Redundancy Elimination(PRE) of 

common subexpression elimination does not give much 

importance to the elimination of edge splitting, even though the 

edge splitting is much more expensive than inserting an 

expression in an existing node of a DFG of a program. So in this 

paper we try to refine the E-Path PRE algorithm with a new 

equation for inserting expressions at nodes avoiding edge splitting 

as far as possible and hence the E-Path PRE algorithm becomes 

more  compact and beautiful. 
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I. INTRODUCTION 

The redundancy of an expression in a program can exist in 

the form of common subexpression, a loop-invariant 

expression, and it can be partial redundancy too, if it is found 

along some of the paths, but not necessarily along all paths. A 

Partially Redundant Elimination (PRE) algorithm is an 

optimization  technique for transforming partial redundancy 

of an expression in a program into fully redundancy and 

eliminate the redundancy. A PRE algorithm is considered to 

be optimal if no other PRE algorithm gives a data flow graph 

which contains fewer computations (less insertions and more 

deletions) in any path in the data flow graph.  

The Morel E and Renvoise C [1] first proposed a 

bi-directional algorithm for code optimization in compilers in 

1979, by suppressing partial redundancies such as moving 

loop invariant computation out of a loop or deleting 

redundant computations. The algorithm is referred to as 

MRA. The MRA algorithm was updated by DM Dhamdhere 

and SM Joshi [2] by including strength reduction techniques. 

However, when there is a loop invariant expression that 

cannot be moved to a node out of the loop, the MRA fails,  

because it performs insertions strictly in nodes of a data flow 

graph, and it does not support the edge splitting at all. And the 

MRA lacks both computational and life time optimality also. 
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The Edge Placement Algorithm [3] by DM Dhamdhere, 

called  EPA,  performs insertions both in nodes and along 

edges in a DFG. In this algorithm an expression is hoisted as 

far up as possible to obtain computational optimality, and then 

it is subjected to sinking to get lifetime optimality without 

sacrificing computational optimality. However EPA does not 

provide lifetime optimality in some cases.  

    The research papers [4] and [5] developed for enhancing 

PRE algorithm to eliminate partial redundancies of 

expressions in a computer program. 

    The problem lies with the paper  [4],  hoisting-by-sinking, 

is that the conceptual complexity is so high that it is hard to 

understand and implement in a compiler. There are  research 

papers  [6] , [7] and [10]  that do not use hoisting-by-sinking 

method. However, the paper [6] suffers from the unnecessary 

edge splitting. But unlike the paper [11] says, the paper [10] 

does avoid the edge splitting by using a conditional statement 

in its algorithm. 

    The PRE algorithm used in the paper [7] is used in the text 

book [8] and in [9] though, the splitting of the edges before 

the analysis of the program results in unnecessary edge 

splitting. 

    DM Dhamdhere [11] proposed a unidirectional data flow 

analysis algorithm for partial redundancy elimination which is 

computationally and lifetime optimal. Though the edge 

splitting is more expensive than inserting an expression at an 

existing node [3],[11], the E-Path PRE algorithm does not 

give much care for eliminating them. In this paper we give an 

alteration to the insert equation at nodes  of the E-Path PRE 

algorithm to remove the edge splitting of a DFG as much as 

possible and hence to make the algorithm more beautiful and 

attractive.  

II.  E-PATH_PRE ALGORITHM BY DM 

DHAMDHERE 

    DM Dhamdhere presented the E-Path algorithm [11]. The 

algorithm first identifies the insertion points at nodes and on 

edges and then identify the saves points, and finally the 

redundant occurrences of an expression for replacement. The 

Table 1 summarizes the data flow properties and equations of  

the  algorithm. Let e be an expression in a nodei of a DFG. The 

local data flow property anticip_loci  represents a locally 

anticipated upwards exposed e in nodei, computei  represents a 

locally available downwards exposed e in nodei, and transi 

reflects the absence of assignments to the operand(s) of e in 

nodei. Global properties of availability, anticipability and 

E-path suffix  are used to collect global information. inserti 

and inserti,j identify e to be inserted in nodei, and on edge(i,j) 

respectively, and savei identifies the node bi in which e should 

be saved. 
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Table 1 : E-PATH Partial Redundancy Elimination 

 

Data Flow Properties 

 

Data Flow Equations 

 

III. A REFINEMENT 

     Consider the control flow graph of  Fig.1(a) consisting of  

7 nodes. Here the E_Path_PRE is n1-n3-n7. So the 

E_PATH_PRE algorithm saves the expression a*b at n1 in a 

temporary variable t and replaces it in the node n7  with t. 

Since s = False for the node n2, insertion 

of the computation at node n2 is not possible according to the 

E-Path PRE algorithm. But insertion on the edge (n2,n3) is 

possible since INSERT23 is true as shown in the Fig.1(b). But 

if we apply the new equation shown in the Table 2, we get the 

Fig.1(c). According to the lemma III in the E_Path PRE 

algorithm an expression  in a node can be eliminated if and 

only if that expression is available at beginning of that  node 

in the optimized program. In Fig.1(c) the expression a-b is 

available at the entry of nodes n4,n5, n6 and n7, and hence the 

expression a-b from them are deleted. The application of the 

new INSERT equation has 2 advantages. One is that it 

eliminates the edge splitting as much as possible, and the 

second is it replaces isolated expressions from the nodes to 

some extend without sacrificing the computational and life 

time optimality of the E-Path PRE algorithm. The expression 

a-b at nodes n4, n5, and n6,  in Fig.1(a) are the isolated 

expressions because the E-Path PRE algorithm cannot form  

E-paths for them. However, they are deleted by the new 

equation as shown in Fig.1(c).   

 

Table 2 : A Refinement on E_Path PRE Algorithm 

 
INSERTi =¬AV_OUTi.¬EPS_OUTi. s s 

 

All other equations remain the same as in the PRE algorithm. 
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Fig.1. Partial Redundancy Elimination 

 

 

 

 

 

computei : e is nearby existing in bi 

anticip_loci : e is nearby anticipatable in bi 

transi : bi does not include an assignment to  

any of   the operands of e 

avail_ini/avail_outi       : e is existing at entry/exit of bi 

anticip_ini/anticip_outi    : e is anticipatable at entry/exit of bi 

e_ps_ ini/e_ps_outi          : entry/exit of bi is in an e-path suffix 

redundi : incidence of e in bi is redundant 

inserti : insert tempe  e in node bi 

insertij : insert tempe  e on edge (bi,bj) 

save _ini/save_outi     : e must be kept above the entry/exit of bi 

savei : e should be  kept in tempe in node bi 

avail_ini : p 

avail_outi : avail_ini.transi +  computei 

anticip_ini     : anticip_outi. transi+ anticip_loci 

anticip_outi   : s 

e_ps_ ini : p+e_ps_outp)anticip_ini¬avail_ini 

e_ps_outi : e_ps_ ini. ¬anticip_loci    

redundi : (avail_ini + e_ps_ ini ).anticip_loci 

inserti    : ¬avail_outi. .¬e_ps_outi. s 

insertij : ¬inserti ¬avail_outi. .¬e_ps_outi. e_ps_inj 

save_outi : s+ redunds+ save _ins). avail_outi   

save _ini : save_outi. ¬computei 

savei : save_outi.computei¬(redundi.transi) 
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IV. CONCLUSION 

     The E-Path PRE algorithm, by DM Dhamdhere  did  not 

take care of eliminating edge splitting much, even though the 

edge splitting is much more expensive than inserting a 

computation in an existing node. In this paper we added much 

care for avoiding edge splitting as far as possible to make the  

E-Path PRE algorithm more refined and compact. In this 

paper we updated the INSERTi  equation to eliminate  the 

edge splitting as mcuh as possible. And the refined algorithm 

is also computationally and lifetime optimal. 
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