Design of Landfill Site Monitoring System to Study the Health Effects of Greenhouse Gases using Autonomous Sensing Nodes

Santhosh B Panjagal, G.N.Kodanda Ramaiah

Abstract: India is a second largest populated country and fastest growing economy in the world, with the rapid urbanization, facing a challenge of massive waste management, as the municipal councils are depositing solid waste at dumping yard within or city outskirts haphazardly. Open dumping of solid waste resulted in emission of greenhouse gases like, methane (CH4), Carbon dioxide(CO2), carbon monoxide(CO) and volatile organic compounds(VOCs) that have calculated risks on human health, leads to ground, air and ground water pollution around the landfill sites.

In this paper we propose to design an interconnected, interoperable remote monitoring system, to study the effects of greenhouse gas concentration level on human health at the surroundings of solid waste dumping yard/landfill site at Kuppam town (Chittoor (dist), Andhra Pradesh, India). We have conducted the real-time survey on health condition of human beings living at the surroundings of waste dumping yard. In this study, we designed a self-powered autonomous sensing node by incorporating industrial gas sensors & measured the concentration levels of greenhouse gases at the center of the site & 300-500 meters away from the dumping yard. The measured concentration levels of gases are uploaded to the IoT servers, and user-friendly Smartphone application is developed to read the greenhouse gas data from IoT servers using API Keys. Comparison of measured concentration level is made against the standard exposure levels (TLV) with duration, to alert the peoples living at the surroundings of MSW site. Surroundings of MSW site monitoring needs a greater attention to address the health issues related to emission of greenhouse gases from dumping sites. The monitoring system has shown satisfactory result in terms of measurement of concentration levels, its exposure limits with the duration and finding the health effects on human beings.

Index Terms: Greenhouse gases, Industrial gas sensors, dumping yards/landfill sites, Health effects, IoT, WSN and Smartphone Application.

I. INTRODUCTION

Solid waste management and monitoring is a major issue, which is gaining more importance in a rapidly growing country like India, as millions of tons of municipal waste is being just dumped in scientific engineered landfill sites or unscientific dumping yards. Invariably, over the period of time the degradation/decomposition of municipal solid waste emits greenhouse gases (GHG)/Landfill gases (LFG) [1], contains typically 60% of Methane gas (CH4), 40% of Carbon Dioxide (CO2) & wide ranges of volatile organic compounds(VOC’s) [2] [8].

The LFG is produces by an anaerobic degradation of organic matter in the dumping yard/landfills; equation 1 gives the anaerobic breakdown of waste (Tchobanoglaeus et al. 1993; Aitchinson 1996) [18] [24].

\[C_{x}H_{y}O_{z}N_{i} + nH_{2}O = XCH_{i} + yCO_{i} + wNH_{j} + 2C_{i}H_{2}O_{2}N + energy \] -------(1)

Where; \(C_{x}H_{y}O_{z}N_{i} \) \(\rightarrow \) Biodegradable organic matter’s empirical formula

\(C_{2}H_{2}O_{2}N \rightarrow \) chemical formula of the microbial mass.

The LFG generation starts after about 3-6 months period, from the waste deposited in the landfill/dumps depending on the amount and rate at which waste decomposition undergone before landfilling [7]. The quality and quantity of LFG produced is based on the rate of degradation of waste. The LFG emission into the environment & surrounding area is influenced by following factors like; atmospheric pressure around the MSW site, type of soil, moisture content in the air, temperature around landfill and age of the landfill (Schroff and Jacobs 2006) [7].

The greenhouse gases emission from landfill sites / dumping yards is not only being emitted into the environment, but more importantly, these gases migrate beyond the landfill boundary to the living area [3]. The greenhouse gas emission at landfill sites/ dumping yard poses greenhouse effect/global warming on a large (global) scale, but the gas emission may be detrimental to the surrounding/local) environment of the site, especially health implications on the living beings at the proximity of the dumping yards [6][20]. The health impacts are so crucial, as carbon dioxide (CO2) poses Asphyxiation (suffocation) risk it is denser than air [4], while excessive Methane (CH4) gas concentrations may result in the death of surrounding vegetation [5], as it is highly flammable in range of 5-15% v/v. The gases like Carbon monoxide (CO) & Hydrogen Sulphide (H2S) are highly toxic in nature, consumption above concentration limits may lead to death.

Revised Manuscript Received on May 30, 2019

Mr. Santhosh B Panjagal, Associate Professor, Department of Electronics and Communication Engineering, KEC-Kuppam (A.P.) India.

Dr. G.N Kodanda Ramaiah, Director R&D, Professor & Head, Department of Electronics and Communication Engineering, KEC-Kuppam (A.P.) India.

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
The most of epidemiological investigations conducted by Dolk et al., Elliott et al., Vrijheid et al. show that landfilling sites are likely be related with a slight increment in the dangers of congenital anomalies [10]. The most detailed examination did by Elliott et al. recognized a conceivable little relationship between nearness areas to landfill sites and the event of inborn anomalies, however a few signs recommend that any expansion is expected at any rate somewhat to factors other than the landfill site [13].

The major pitfalls of epidemiological studies using distance of residence from the MSW site (the vicinity to a site) as a factor for the exposure to LFG gases emitted from the landfill sites, as opposed to evaluating the exposure of population to the specific LFG concentrations from the landfill sites in the investigation. Therefore, researchers recognises the future work should be directed on exposing population to the LFG emitted from the landfills and their associated health effects on the human beings.

The present research work concentrated on studying the health effects of LFG(GHG) concentration levels around the Kuppam dumping yard with real-time survey & measuring the LFG concentration levels at the landfill site & 500 to 1000 Meters away from the site, where the peoples living around. We selected the Kuppam municipal waste dumping yard for the study

The proposed research work involves the development of a small, energy efficient, autonomous sensor nodes to measure the landfill gases at the selected locations using industrial sensors. The type of industrial sensors selected for measurement are based on the factors like Cost, accuracy, range & Power consumption, they are; Infra-red (IR) based sensor(CDM6840) for Carbon dioxide (CO2) measurement, Electrochemical sensor (TGS5460) for Carbon monoxide (CO) measurement & Semiconductor sensor (TGS2611) for Methane (CH4) measurement.

The site receives approximately 50 to 100 tonnes of waste every day with having no gas collection unit, therefore the LFG is directly emitted to open environment & also most part of it migrates to the surrounding living area around the site.

2.2 Sapling of LFG & Sample Analysis
In this research study, the concentration of LFG emissions are measured by developing autonomous gas sensing nodes incorporating the industrial sensors, CDM4860 (CO2), TGS5340 (CO) & TGS2611 (CH4). The sensing nodes are powered by solar energy for portable LFG measurements. Here, one sensor node is placed at the center of the dumping site & remaining at the boundaries of the site, but to study & measure the level of LFG concentration emitted to the surrounding places up to 500m, one of the portable autonomous sensor nodes is used. The concentration levels of greenhouse gases were measured starting from the center of the landfill site, and then measurement is extended up to 50 meters, 100m, 200m & 500m radius surrounding the site. The amount of gas concentration was also measured at different houses situated at the proximity of the dumping site. The sampling of data was carried out up to 6 months starting from June 2018 to November 2018, finally, after the interpretation & processing of the data, it was uploaded to Internet of Things (IoT) for remote monitoring through mobile applications & web links.

2.3 Methodology
2.3.1 Remote Monitoring
There are four possible approaches to monitoring gaseous emissions at MSW landfill sites. These are passive sampling, active sampling, continuous monitoring and remote monitoring (McGettigan et al., 2000). Remote monitoring method/approach was adopted to perform real-time measurements autonomous sensing nodes, developed by incorporating Infra-red & chemical industrial type gas sensors. The real-time measurement of greenhouse gas concentration levels was carried-out at and/or around the selected study area for an around 6 months. IPCC default method was used to analyze the emission concentration and daily exposure levels at the sites.

2.3.2 Data storage & IoT Mobile Application
Landfill gas emission measurements were carried out using fixed and portable autonomous gas sensing nodes up to 500m distance from the site.
Then the measured gas concentrations were analyzed & uploaded to IoT database for further assessment of health risks around the study area. User-friendly Mobile Application reads the real-time data from the IoT analyses the concentration levels & displays the possible health effects by comparing the standard threshold levels (screening values) framed by IPCC [20].

2.4 Risk Assessment & Standard Guidelines:

In order to assess the health effects of gas emissions on human beings, a real-time survey has been conducted during June 2018 to November, 2018 at nearby houses surrounding the site. The real-time survey includes questionnaires: queries of health status viz: disease type, frequency of occurrence & age. Based on the surveyed data and measured gas concentration levels, Risk assessment was carried out, considering the standard safety daily intake of gas concentration levels. Risk assessment is based on the chronic daily intake of LFG concentration levels was calculated from equation (2) below [6]:

\[EC = \frac{C_{air} \times EF \times ED \times AT}{ET} \]

Where,
EC \rightarrow Exposure concentration (in mg/m^3),
C_{air} \rightarrow Air median concentration of each pollutant (in mg/m^3),
EF \rightarrow Exposure frequency (250 days/year),
ED \rightarrow Exposure duration (25 years),
ET \rightarrow Daily exposure time (8/24h),
AT \rightarrow Average time (365 days/year ED).

Next, the exposure concentration obtained was compared with standard limit values (Screening values) established to estimate the hazardous health effects of LFG’s from the regulation and guideline given.

Table I & II give the standard guidelines for GHG exposure threshold limit values:

Table I: Standard Exposure limit values of CO2 [25]

<table>
<thead>
<tr>
<th>TLV-TWA</th>
<th>TLV-STEL</th>
<th>IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000 ppm</td>
<td>30,000 ppm</td>
<td>40,000 ppm</td>
</tr>
</tbody>
</table>

Table II: Standard Exposure limit values of CH4 [25]

<table>
<thead>
<tr>
<th>TLV-TWA</th>
<th>TLV-STEL</th>
<th>IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000 ppm</td>
<td>30,000 ppm</td>
<td>40,000 ppm</td>
</tr>
</tbody>
</table>

Next, the exposure concentration obtained was compared with standard limit values (Screening values) established to estimate the hazardous health effects of LFG’s from the regulation and guideline given.

Table I & II give the standard guidelines for GHG exposure threshold limit values:

Table I: Standard Exposure limit values of CO2 [25]

<table>
<thead>
<tr>
<th>TLV-TWA</th>
<th>TLV-STEL</th>
<th>IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000 ppm</td>
<td>30,000 ppm</td>
<td>40,000 ppm</td>
</tr>
</tbody>
</table>

Table II: Standard Exposure limit values of CH4 [25]

<table>
<thead>
<tr>
<th>TLV-TWA</th>
<th>TLV-STEL</th>
<th>IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000 ppm</td>
<td>30,000 ppm</td>
<td>40,000 ppm</td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

In order to study the hazardous health effects associated with greenhouse gas [GHG] emissions around the landfill/dump site, designed a portable embedded device using industrial sensors shown in figure 3.1 and conducted measurement of GHG concentration at MSW filling site, 100 m, 300 m & 500 m away from the site near the resident areas. The concentration of GHG measured from the pointed places can be established by comparing Threshold Limit Value (TLV) and the daily chronic intake can be established by Exposure Concentration (EC) obtained.
Design of Landfill Site Monitoring System to Study the Health Effects of Greenhouse Gases using Autonomous Sensing Nodes

The graphs in figures 3.2-3.5 show the measured concentration levels of CO₂, CH₄ & CO over the period of 6 months, around 60 samples were collected at pointed places from the MSW filling site.

Table III: The Measured Value of Concentration & Chronic Daily Intake of Greenhouse Gases

<table>
<thead>
<tr>
<th>Location</th>
<th>Measured Concentration (ppm)</th>
<th>EC (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSW Filling Site</td>
<td>2100-3450 300-750 45-100</td>
<td>332.36-8 44.54 74.26-18</td>
</tr>
<tr>
<td>100m from MSW Site</td>
<td>610-1450 220-550 38-5 0</td>
<td>150.25-3 55.21 54.56-37</td>
</tr>
<tr>
<td>300m from MSW Site</td>
<td>298-680 210-390 35-4 0</td>
<td>204.65-1 67.35 52.46-96</td>
</tr>
<tr>
<td>500m from MSW Site</td>
<td>290-670 160-365 25-3 5</td>
<td>71.38-16 4.59 40.03-90</td>
</tr>
</tbody>
</table>

Table IV: Real survey data analysis showing health condition around MSW Site Kuppam

<table>
<thead>
<tr>
<th>Resident Name</th>
<th>Symptoms</th>
<th>Frequency of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Manil</td>
<td>Malaria, Cough, Drowsiness</td>
<td>1 Week</td>
</tr>
<tr>
<td>M.Permal</td>
<td>Cough, Allergy, Fever</td>
<td>1-15 Days</td>
</tr>
<tr>
<td>M.Hanieef</td>
<td>Fatigue, Cough, Dangyu Fever</td>
<td>7 Days</td>
</tr>
<tr>
<td>A.Jaffer</td>
<td>Asthma, Fever</td>
<td>1-10 Days</td>
</tr>
<tr>
<td>K.Muniappa</td>
<td>Asthma, Bad Smell, Fatigue</td>
<td>1 Week</td>
</tr>
<tr>
<td>Sujatha</td>
<td>Cough, Asthma, Drowsiness</td>
<td>1-5 Days</td>
</tr>
<tr>
<td>Kavitha</td>
<td>Fever, Sleeplessness</td>
<td>5 Days</td>
</tr>
<tr>
<td>Mohan</td>
<td>Cough, Allergy, Cold</td>
<td>4 Months</td>
</tr>
<tr>
<td>Muni lakshmi</td>
<td>Cough, Headache</td>
<td>1 Week</td>
</tr>
<tr>
<td>Kanchanamma</td>
<td>Vomits, Headache</td>
<td>1 Week</td>
</tr>
<tr>
<td>China Raju</td>
<td>Asthma, Malaria</td>
<td>2 Months</td>
</tr>
<tr>
<td>Venu Raj</td>
<td>Tub, Asthma</td>
<td>1 Week</td>
</tr>
<tr>
<td>Krishna</td>
<td>Fever, Cough</td>
<td>1 Week</td>
</tr>
<tr>
<td>J.Balaji</td>
<td>Nausea, Allergy</td>
<td>1 Week</td>
</tr>
<tr>
<td>Naveen</td>
<td>Drowsiness</td>
<td>1 Week</td>
</tr>
</tbody>
</table>

Table III shows the summary of measured concentration and calculated chronic daily intake i.e Value of Exposure Concentration (EC) of CO₂, CH₄ and CO greenhouse gases at different locations from the MSW site. From Table 2 it is found that CO₂ & CH₄ are below the threshold limits given by ACGIH & NIOSH, but CO concentration exceeds its TLV-TWA of 50ppm as per ACGIH at MSW filling Site. Similarly, at 100m from the MSW site CO just likely exceeds the TLV and CO₂, CH₄ are well within the TLV.

Real survey conducted around the MSW site data analysis shows that, about 15 residents are suffering from various diseases as shown in Table IV.

IV. CONCLUSION

Hence with this research work, we tried to study the health issues associated with LFG emissions around the waste dumping site by designing low cost, low power autonomous sensing node.
Conducted real survey to know the status of resident’s health & LFG concentrations around the MSW site up to 6 months, survey data shows residents staying at the proximity of the site are facing some health issues mentioned in table IV. Therefore here we designed a self-powered, intelligent embedded device to measures and analyzes the measured LFG concentration, compares with the standard TLV levels to alert about the health effects associated with constant exposure of GHG. Finally the measured data was uploaded to IoT clouds for remote access & monitoring. Designed a user-friendly mobile application for accessing concentration levels of GHG at the selected sites for creating awareness to the residents around the landfill sites about health effects of greenhouse gases emitted to the surrounding areas. The designed embedded autonomous sensing device with infrared and chemical sensors has shown satisfactory results with good accuracy. Therefore effective real-time monitoring of landfill gas emissions around MSW sites, with alerting may reduce the health risks on the living beings.

ACKNOWLEDGEMENT

The authors would like to express gratitude to University Grants Commission (UGC), New Delhi, for providing fund under Minor Research Project (MRP) scheme to conduct this research work [grant Number MRP-6622/16 (SERO/UGC)] & publication. Also extend grateful to Guide G.N Kodanda Ramaiyah & KEC management for the motivation and research facilities provided in the R&D Centre of Kuppam engineering college-Kuppam.

REFERENCES

AUTHORS PROFILE

Mr.Santhosh B Panjagula, M.Tech, (PhD) Currently working as an Associate Professor, ECE-Department, KEC-Kuppam, A.P. INDIA. He pursued his B.E in 2006 from PDACE-Gulbarga affiliated to VTU-Belagavi. M.Tech in 2014 from SVV CET-Chittoor, JNTU-Ananthapur and currently pursuing Ph.D in VTU-Belagavi. Published more than 10 research papers in many international journals, presented 10 papers in a national & international conferences. He is a life member of IEI, ISRD & IAENG. His research interests are embedded systems, Wireless Sensor Networks, mobile communications and software development

Dr.G.N Kodanda Ramaiyah, M.Tech. Ph.D, Director R&D, Professor & Head, ECE-Department, KEC-Kuppam, A.P. INDIA. pursued his M.Tech degree from SIC Mysore, affiliated to VTU-Belagavi. Doctorate in 2012, JNTU-Ananthapur Published more than 40 research papers in international journals, presented 10 papers in both national & international conferences. Currently he is life member of ISTE, MISTE, IEI. His research interests are embedded systems, Wireless Sensor Networks, mobile communications and Signal Processing & Speech Processing.