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 

Abstract: This report is presented on the parametric excitation 

and dynamic stability of functionally graded ordinary (FGO) 

rotating cantilever Timoshenko beam. The equation of motion is 

derived using Finite element method in conjunction with 

Hamilton’s principle. Floquet’s theory is used to establish the 

stability boundaries. It is assumed that the properties along the 

depth of the FGO material beam follows the power law with 

different indices as well as exponential distribution law. The 

elastic property variation using power law at different indices and 

a comparison of elastic property variation between using power 

law at n=0.5 and exponential law along the thickness of FGO 

beam have been investigated. The properties drawn by 

Exponential distribution confirms better stability compared to 

properties drawn by power law. 

 
Index Terms: Exponential distribution, FGO beam, load 

factor, Power law, Stability.   

I. INTRODUCTION 

 Vibrating structures under rotation such as compressors, 

motors, pumps and micro-electro-mechanical systems is a 

naturally occurring phenomenon and results severe vibration 

in a structural resonant mode with an excitation by harmonic 

loading because of imbalanced rotor or variable fluid 

dynamic force, which causes heavy mechanical damage. 

Thus, the understanding of stability and dynamic response of 

rotating structures in service is highly important to avoid the 

risk of such resonance problems. In real life, the above 

mentioned rotating structures are normally pre-twisted and 

the cross-section is asymmetric in nature. However, Prismatic 

beams under rotation may be used as a sample model and 

compared at par with the actual rotating structures for 

investigation of stability and dynamic response. The research 

on functionally graded materials (FGMs) is rapidly growing 

because of its ability to meet desired material properties in 

contrast to the conventional homogeneous and layered 

composite materials which suffer from debonding, huge 

residual stress, locally large plastic deformations etc. An 

FGM can be a good replacement for the material of rotating 
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beams. The present research work has been carried out with a 

good amount of literature survey on the rotating beam 

structures and reported below.  

Brown et al. [1] have used the finite element method to 

study the parametric instability of uniform bars. Eisenberger 

et al. [2] have presented and compared the two methods for 

solving the eigenvalue problems of vibrations and stability of 

a beam on a variable Winkler elastic foundation. Heyliger et 

al. [3] have studied the influence of in-plane inertia and 

slenderness ratio on the non-linear frequency for beams with 

different support conditions. Datta  et al. [4] have studied the 

parametric instability behaviour of a non-prismatic bar with 

localized zones of damage resting on an elastic foundation by 

using finite element analysis. Masashi [5] has examined the 

effects of coordinate system on the accuracy of corotational 

formulation for planar Bernoulli-Euler's beam. Murin [6] has 

studied the Cartesian stiffness matrix using methods of 

differential geometry. Kosmatka [7] developed the linear 

flexural stiffness, incremental stiffness, mass, and consistent 

force matrices for a simple two-node Timoshenko beam 

element based upon Hamilton's principle. Lee [8] has 

reported on the stability of a rotating cantilever beam using 

Hamilton’s principle and assumed mode method. It is found 

that a rotating beam is not likely to experience parametric 

instability when the beam is short and the rotational speed of 

the beam is large. Dufour and Berlioz [9] have verified their 

simulated results of the investigation on the stability of an 

axial loaded beam with periodic force and torque. 

Sabuncu et al. [10] have studied the dynamic stability of a 

blade having asymmetric aerofoil cross-section subjected to 

lateral parametric excitation using the finite element method 

considering the effects of the shear coefficient, the beam 

length, coupling due to the centre of flexure distance from the 

centroid and rotation on the stability and found that as the 

length of the beam decreases, the effect of the shear 

coefficient on stability becomes significant and with an 

increase in the rotational speed, the blade becomes more 

stable. Aminbaghai et al. [11]  contributed on modelling and 

simulation of a free vibration of the 2D functionally graded 

material (FGM) beams with continuous spatial variation of 

material properties and reported that the continuous variation 

of the effective elasticity modulus and mass density can be 

caused by continuous variation of both the volume fraction 

and material properties of the FGM constituents in the 

transversal and longitudinal direction.  
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Shafiei et al. [12] have made an exhaustive study on the small 

scale effect on vibrational behavior of a rotary tapered axially 

functionally graded (AFG) microbeam on the basis of 

Timoshenko and Euler-Bernoulli beam and modified couple 

stress theories using Hamilton's principle to derive the 

equations for cantilever and propped cantilever boundary 

conditions and the generalized differential quadrature 

method (GDQM) to solve the equations. 

Shafiei et al. [13] have studied the vibration behavior of the 

two-dimensional functionally graded nano and microbeams 

which are made of two kinds of porous materials for the first 

time, based on Timoshenko beam theory modelling  the 

2D-FGMs according to the power law. Azimi et al.[14] have 

done the vibration analysis of rotating, functionally graded 

Timoshenko nano-beams under an in-plane nonlinear thermal 

loading using Eringen's nonlocal elasticity theory. Though 

many researchers have reported on static and dynamic stability 

of ordinary beams plentily, the literature on dynamic stability 

of functionally graded rotating beams reported are not enough 

to the best of the authors’ knowledge. In the present article, a 

functionally graded rotating ordinary beam with fixed-free 

support condition is considered for dynamic stability analysis. 

II. FORMULATION  

An FGO beam with alumina as top skin, steel as bottom skin 

is shown in Fig. 1(a). One end of the beam is clamped and 

other end kept free. A pulsating axial force P(t) = Ps + 

P(t)SinΩt , is applied on the beam and acting along its neutral 

axis. Where Ps  is the static component of the axial force, P(t), 

Ω  , and t are respectively the amplitude, frequency and time 

of the dynamic component of the force. Fig. 1(b) shows the 

two noded finite element coordinate system used to derive the 

governing equations of motion. Fig.1(b) shows the 

expression for the displacements on (x-y) plane (reference 

plane)  at the centre of the longitudinal axis. The thickness 

coordinate is measured as ‘z’ from the reference plane. The 

axial displacement and the transverse displacement of a point 

on the reference plane are, u and w respectively and ϕ is 

rotation of cross-sectional plane with respect to the 

un-deformed configuration. Figure 1(c) shows a two nodded 

beam finite element having three degrees of freedom per 

node.   

Figure 1(a) Functionally graded ordinary beam subjected to 

dynamic axial load. 

Figure 1(b) The coordinate system with generalized forces 

and displacements for the FGO beam element. 

 
Figure 1(c) Beam element showing generalized degrees of 

freedom for ith element. 

A. Shape Functions 

According to the first order Timoshenko beam theory the 

displacement fields are expressed as  
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Where )(),(,, zGzExzxx  and k are the normal stress on 

x-x plane, shear stress in x-z plane, Young’s modulus, shear 

modulus and shear correction factor respectively. The 

variation of material properties along the thickness of the 

FGM beam governed by  

(i) Exponential law is given by 
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(ii) Power law is given by 
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       Where, )(zR  can be any one of the material properties 

such as, GE, and   etc., denote the values of The 

corresponding properties at top and bottommost layer of the 

beam are represented by  tR  and bR  respectively, and the 

power index is n. The change in the values of E of FGM 

governed by power law along the thickness with different 

indices and a comparison between power law and exponential 

law is shown in Fig. 2(a) and Fig. 2(b) respectively.  
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Fig. 2(a) Change in Young’s modulus (E) along depth(Z) of 

FGM beam with steel-rich bottom and alumina-rich top 

according to power law with various indices.  

 

Fig. 2(b) Comparison of change in Young’s modulus (E) 

along depth(Z) of FGM beam with steel-rich bottom and 

alumina-rich top according to power law at n = 0.5 and 

exponential law. 

Now the shape function can be expressed as 

          6
T
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where,  xu ,  xw ,  x  are the shape functions for 

the axial, transverse and rotational degree of freedom 

respectively. 

 

B. Element Elastic Stiffness Matrix 

 

The element elastic stiffness matrix is given by the relation 

      7ˆ Fuke 

where,  F  = nodal load vector and  ek  = element elastic 

stiffness matrix. 

 

C. Element Mass Matrix 

The element mass matrix is given by  
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D. Element Centrifugal Stiffness Matrix 

 

The ith element of the beam is subjected to centrifugal force 

which can be expressed as  
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Where xi = the distance between i

th
 node and axis of 

rotation, N
~

 and R are the angular velocity and radius of hub.  

Work due to centrifugal force is  
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 E. Element Geometric Stiffness Matrix 

The work done due to axial load P  may be written as 
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Substituting the value of w  from eq. (6) into eq. (12) the 

work done can be expressed as 
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here, 
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 Where,  gk  = geometric stiffness matrix of the element. 

III. EQUATION OF MOTION 

Using Hamilton's principle. 
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Substituting Eqns (7, 8, 10 and 13) into Eqn (15) and 

rewritten in Eqn (16) 

           160ˆˆ  uktPkum gef


    

           170ˆcosˆ   uktPkum gdef 

   

 

 

 

 



 

Parametric Instability and Property Variation Analysis of a Rotating Cantilever FGO Beam 

2924 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number A1148058119/19©BEIESP 

Journal Website: www.ijrte.org 

 

       18ceef kkk 

 where,  ek ,  ck
, 
 m  and  gk  are elastic stiffness 

matrix, centrifugal stiffness matrix, mass matrix and 

geometric stiffness matrix respectively.
 
 efk  is the 

effective stiffness matrix. Assembling the element matrices as 

used in eq. (17), the equation of motion in global matrix form 

for the beam, can be expressed as     
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Where  M ,  efK ,  gK are global mass, effective 

stiffness and geometric stiffness matrices respectively and 

 Û  is global displacement vector. Equation (19) represents 

a system of second order differential equations with periodic 

coefficients of the Mathieu Hill type. Floquet Theory has 

been used to distinguish between the dynamic stability and 

instability zones as follows. A solution with period 2T which 

is of practical importance is represented by 
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 Substituting eq. (20) into eq. (19) and solving the boundary 

solutions with period 2T. The resulting equation is given by 
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     Equation (21) ends up with an eigenvalue problem with 

known quantities 
P ,  , d  . Where 

P  is the critical 

buckling load . 
The plus and minus sign in the eq. (21) results with two sets 

of eigenvalues   binding the regions of instability and can 

be determined from the solution of the  above equation 
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Free Vibration 

The eq. (22) can be written for a problem of free vibration by 

substituting  =0, d =0, and
2


  
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The values of the natural frequencies    can be obtained by 

solving eq. (23). The frequency analysis is beyond the scope 

of this article. 

B. Static Stability 

The eq. (22) can be written for a problem of static stability by 

substituting  =1, d =0, and 0  

     240 

gef KPK

The values of buckling loads can be obtained by solving eq. 

(24). Analysis on buckling load is not included in this article.  

 

C. Regions of Instability 

1 and
P  are calculated from eq. (23) and eq. (24) for an 

isotropic steel beam with identical geometry and end 

conditions ignoring the centrifugal force. 

Choosing 1

1
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For fixed values of  , d ,
P , and 1 , the eq. (25) can 

be solved for two sets of values of 






 

1
 and a plot between 

d  and 



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

 

1
can be drawn which will give the zone of 

dynamic instability.

 
IV. RESULTS AND DISCUSSION 

An FGO rotating cantilever beam of steel-alumina with 

length 1m and width 100mm is taken for the parametric 

instability analysis. The beam is steel-rich bottom and 

alumina-rich top. The mechanical properties of the two 

phases of the beam are considered as given in the following 

table. 

Table 1. Material properties of Steel-Alumina FGO beam. 

Properties of steel Properties of alumina 

Young’s modulus 

E =2.1x10
11

 Pa 

Young’s modulus 

E =3.9x10
11

 Pa 

Shear modulus 

G =0.8x10
11

 Pa 

Shear modulus 

G =1.37x10
11

 Pa 

Mass density 

 =7.85x10
3
kg/m

3
 

Mass density 

 =3.9x10
3
kg/m

3
 

Poisson’s ratio ν is assumed as 0.3,shear correction factor 

k=(5+ν)/(6+ν)=0.8667 

Static load factor  =0.1 

Critical buckling load,
P =6.49x10

7
 N 

Fundamental natural frequency 1 =1253.1 rad/s 

 

FGO beams with properties along the depth by power law 

with index n=1.5, n=2.5 and by exponential law have been 

investigated for dynamic stability. It has been found that 

stability is increased because of either the instability regions 

being more and more away from the dynamic load factor axis 

or decrease in the area of the instability regions. Fig. 3(a) and 

fig. 3(b) respectively are plotted to depict the influence of 

property distribution on the instability region for first mode 

and second mode. It is obvious from the plot that the area of 

the instability region of FGO beam by exponential law is the 

smallest among the three and is placed farthest from the 

dynamic load factor axis. Thus FGO beam by exponential 

law is found to be the most 

stable beam for both the 

modes. 
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 The area of instability region of FGO beam with n=2.5 is 

the largest for both the modes. Hence it is the least stable 

beam.  
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Figure 3(a). Dependence of first mode instability region on  

 

property distribution of steel-alumina FGO beam for δ=0.1, 

s =0.2,  =1.15 (*n=1.5, 
o
n=2.5, 

+
exp. law) 
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Figure 3(b). Dependence of second mode instability region 

on property distribution of steel-alumina FGO beam for 

δ=0.1, s =0.2,  =1.15 (*n=1.5, 
o
n=2.5, 

+
exp. law) 

V. CONCLUSION 

Finite element method is used to analyze the dynamic 

stability of FGO rotating cantilever beams. The variation of  

material properties along the depth of FGO beam is assumed 

to be following either exponential law or power law. The 

dependence of property distribution and parametric 

instability on beam geometry of the beams is investigated.  

Between the Exponential distribution and Power law, 

Exponential distribution of material properties along the 

depth of the beam seems to have better dynamic stability than 

the properties distributed by power law for FGO beams. 
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